K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCBM có \(\widehat{CBM}=\widehat{CMB}\)

nên ΔCBM cân tại C

c: Xét ΔADB vuông tại A và ΔCDM vuông tại C có 

DA=DC

\(\widehat{ADB}=\widehat{CDM}\)

Do đó: ΔADB=ΔCDM

Suy ra: AB=CM

Xét tứ giác ABCM có 

AB//CM

AB=CM

Do đó; ABCM là hình bình hành

Suy ra: AM=BC

13 tháng 2 2022

bạn ơi còn thiếu so sánh CM và CA, bạn giúp mik vs

 

 

a: BC=căn 6^2+8^2=10cm

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

góc FBE chung

=>ΔBEF=ΔBAC

=>BF=BC

=>ΔBFC cân tại B

a: Xét ΔAMB và ΔAMC có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: AH=AK

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: BA=BH

b: ta có: ΔBAD=ΔBHD

nên DA=DH

mà DH<DC

nên DA<DC

c: Ta có: BA=BH

DA=DH

Do đó: BD là đường trung trực của AH

hay BD⊥AH

a, Vì \(\Delta ABI\)và \(\Delta BDI\)đều có 1 góc vuông , mà \(\widehat{ABI}=\widehat{IBD}\)( Do BI là phân giác ) nên góc còn lại của 2 tam giác bằng nhau .

= > \(\widehat{BIA}=\widehat{BID}\) ( sử dụng t/c tổng 3 góc của 1 tam giác bằng 1800 )

= > \(\Delta ABI=\Delta DBI\left(g.c.g\right)\)

b, Vì \(\Delta ABI=\Delta DBI\)( câu a, )

= > \(AB=BD\)( 2 cạnh tương ứng )

c, Từ câu a, = > \(AI=ID\), mà \(\Delta DIC\)có IC là cạnh huyền nên IC > DI hay IC > AI

d, Vì \(\Delta ABI\perp A\)nên \(\widehat{AIB}\)chắc chắn là góc nhọn 

= > góc bù với \(\widehat{AIB}\)là \(\widehat{BIC}\) là góc tù.

Mà trong 1 \(\Delta\), cạnh đối diện với góc tù luôn là cạnh lớn nhất trong \(\Delta\)( Do trong \(\Delta\)chỉ có tối đa 1 góc tù nên cạnh đối diện góc tù sẽ là lớn nhất )

= > Cạnh BC lớn nhất trong \(\Delta BIC\)hay BC > BI

a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có

BM chung

\(\widehat{ABM}=\widehat{HBM}\)

Do đó: ΔABM=ΔHBM

Suy ra: MA=MH

b: Ta có: MA=MH

mà MH<MC

nên MA<MC