Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCBM có \(\widehat{CBM}=\widehat{CMB}\)
nên ΔCBM cân tại C
c: Xét ΔADB vuông tại A và ΔCDM vuông tại C có
DA=DC
\(\widehat{ADB}=\widehat{CDM}\)
Do đó: ΔADB=ΔCDM
Suy ra: AB=CM
Xét tứ giác ABCM có
AB//CM
AB=CM
Do đó; ABCM là hình bình hành
Suy ra: AM=BC
a: BC=căn 6^2+8^2=10cm
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc FBE chung
=>ΔBEF=ΔBAC
=>BF=BC
=>ΔBFC cân tại B
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: AH=AK
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH
b: ta có: ΔBAD=ΔBHD
nên DA=DH
mà DH<DC
nên DA<DC
c: Ta có: BA=BH
DA=DH
Do đó: BD là đường trung trực của AH
hay BD⊥AH
a, Vì \(\Delta ABI\)và \(\Delta BDI\)đều có 1 góc vuông , mà \(\widehat{ABI}=\widehat{IBD}\)( Do BI là phân giác ) nên góc còn lại của 2 tam giác bằng nhau .
= > \(\widehat{BIA}=\widehat{BID}\) ( sử dụng t/c tổng 3 góc của 1 tam giác bằng 1800 )
= > \(\Delta ABI=\Delta DBI\left(g.c.g\right)\)
b, Vì \(\Delta ABI=\Delta DBI\)( câu a, )
= > \(AB=BD\)( 2 cạnh tương ứng )
c, Từ câu a, = > \(AI=ID\), mà \(\Delta DIC\)có IC là cạnh huyền nên IC > DI hay IC > AI
d, Vì \(\Delta ABI\perp A\)nên \(\widehat{AIB}\)chắc chắn là góc nhọn
= > góc bù với \(\widehat{AIB}\)là \(\widehat{BIC}\) là góc tù.
Mà trong 1 \(\Delta\), cạnh đối diện với góc tù luôn là cạnh lớn nhất trong \(\Delta\)( Do trong \(\Delta\)chỉ có tối đa 1 góc tù nên cạnh đối diện góc tù sẽ là lớn nhất )
= > Cạnh BC lớn nhất trong \(\Delta BIC\)hay BC > BI
a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có
BM chung
\(\widehat{ABM}=\widehat{HBM}\)
Do đó: ΔABM=ΔHBM
Suy ra: MA=MH
b: Ta có: MA=MH
mà MH<MC
nên MA<MC