Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
1 + 31 + 32 + 33 + 34 ... + 330
= 1 + 31 + 2 + 3 + 4 .. + 30
= 1 + 3465
Tận cùng của 3465
cứ 5 chữ số 3 nhân với nhau thì có tận cùng là 3 . Vì 465 chia hết cho 5 nên tận cùng của 3465 là 3
3 + 1 = 4 nên tận cùng của 1 + 3465 = 4
Các đặc điểm của số chính phương :
Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.
- Khi phân tích một số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.
- Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1.
- Công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)(a-b).
- Số ước nguyên dương của số chính phương là một số lẻ.
- Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2.
- Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 +7, 1 + 3 + 5 +7 +9 v.v...
S thỏa mãn các điều kiện trên nên S là số chính phương
Ta có : \(S=1+3+3^2+3^3+....+3^{30}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+....+3^{31}\)
\(\Rightarrow2S=3^{31}-1\)
\(\Rightarrow2S=3^{4\cdot7+3}-1\)
\(\Rightarrow2S=81^7\cdot27-1\)
\(\Rightarrow2S=\)\(\overline{...1\cdot}27-1\)
\(\Rightarrow2S=\overline{...27}\)\(-1\)
\(\Rightarrow2S=\overline{...6}\)
\(\Rightarrow S=\overline{...3}\)Hay S ko là SCP
\(S=1+3^1+3^2+3^3+...+3^{30}\)
\(3S=3+3^2+3^3+...+3^{31}\)
\(3S-S=3^{31}-1\)
\(2S=3^{4.7+3}-1\)
\(2S=81^7.27-1\)
\(2S=\overline{......1}.27-1\)
\(2S=\overline{......7}-1=\overline{......6}\)
\(S=\overline{........3}\)
Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương
A=\(17^{2008}-11^{2008}-3^{2008}\)
A=\(\left(17^4\right)^{502}-11^{2008}-\left(3^4\right)^{502}\)
A=\(83521^{502}-11^{2008}-81^{502}\)
A=\(\left(......1\right)-\left(.......1\right)-\left(........1\right)\)
A=\(\left(.........9\right)\)
Vậy A có chữ số tận cùng là 9
2)M=\(17^{25}+24^4-13^{21}\)
M=\(17^{24}\cdot17+\left(24^2\right)^2-13^{20}\cdot13\)
M=\(\left(17^4\right)^6\cdot17+576^2-\left(13^4\right)^5\cdot13\)
M=\(83521^6\cdot17+\left(......6\right)-28561^5\cdot13\)
M=\(\left(.......1\right)\cdot17+\left(........6\right)-\left(.........1\right)\cdot13\)
M=\(\left(........7\right)+\left(..........6\right)-\left(...........3\right)\)
M=\(\left(...........0\right)⋮10\)
Vậy M\(⋮10\)
\(3S=3+3^2+3^3+3^4+...+3^{31}\)
\(2S=3S-S=3^{31}-1\)
\(S=\frac{3^{31}-1}{2}=\frac{\left(3^4\right)^7.3^3-1}{2}\)
\(3^4\) có tận cùng là 1 => \(\left(3^4\right)^7\)có tận cùng là 1; \(3^3\)có tận cùng là 7
=> \(\left(3^4\right)^7.3^3-1\) có tận cùng là 6 => S có tận cùng là 3 hặc 8 và S không phải số chính phương vì số chính phương không bao giờ có tận cùng là 2; 3; 7; 8