K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

a, 2x^2 + 5x = 0

=> x(2x + 5)  = 0

=> x = 0 hoặc 2x + 5 = 0

=> x = 0 hoặc x = -5/2

b. x^2 - 1 = 0

=> (x - 1)(x + 1) = 0

=> x - 1 = 0 hoặc x + 1 = 0

=> x = 1 hoặc x - -1

Bài 1: (2,0 điểm)1. Cho đơn thúca) Thu gọn đơn thức A, xác định hệ số và bậc của đơn thứcb) Tính giá trị của đơn thức A tại x = -2, y = 1/32. Xác định hệ số của m để đa thức f(x) = mx2 + 3(m – 1)x – 16 có nghiệm là -2Câu 2 (2,5 điểm)Cho 2 đa thức:P(x) = 2×2 + 2x – 6×2 + 4×3 + 2 – x3Q(x) = 3 – 2×4 + 3x + 2×4 + 3×3 – xa) Thu gọn và sắp xếp đa thức P(x) và Q(x) theo lũy thừa giảm dần của...
Đọc tiếp

Bài 1: (2,0 điểm)
1. Cho đơn thúc
a) Thu gọn đơn thức A, xác định hệ số và bậc của đơn thức
b) Tính giá trị của đơn thức A tại x = -2, y = 1/3
2. Xác định hệ số của m để đa thức f(x) = mx2 + 3(m – 1)x – 16 có nghiệm là -2
Câu 2 (2,5 điểm)
Cho 2 đa thức:
P(x) = 2×2 + 2x – 6×2 + 4×3 + 2 – x3
Q(x) = 3 – 2×4 + 3x + 2×4 + 3×3 – x
a) Thu gọn và sắp xếp đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến
b) Tìm đa thức C(x) biết C(x) = P(x) + Q(x)
c) Chứng minh đa thức D(x) = Q(x) – P(x) vô nghiệm
Câu 3 (2,0 điểm)
Một giáo viên theo dõi thời gian giải xong một bài tập (tính bằng phút) của học sinh lớp 7A như sau:
a) Dấu hiệu điều tra ở đây là gì? Số các giá trị khác nhau của dấu hiệu là bao nhiêu?
b) Lập bảng tần số và tìm mốt của dấu hiệu
c) Tính số trung bình cộng của dấu hiệu
Câu 4 (3,0 điểm)
Cho tam giác ABC vuông tại A, phân giác BD (D thuộc AC), kẻ DE vuông góc với BC tại E, F là giao điểm của hai đường thẳng DE và AB.
a) Chứng minh AB = EB
b) Chứng minh tam giác ADF bằng tam giác EDC
c) Chứng minh: AE //FC
d) Gọi H là giao điểm của BD và FC. Chứng ming D cách đều các cạnh tam giác AEH
Câu 5 (0,5 điểm)
Cho đa thức f(x) = ax2 + bx + c với các hệ số a, b, c thỏa mãn: 11a – b + 5c = 0
Biết f(1).f(-2) khác 0. Chứng minh rằng f(1) và f(-2) không th

1
30 tháng 7 2019

Bài 3:

a/ Dấu hiệu ở đây là thời gian làm bài ( tính theo phút ) của mỗi học sinh ( ai cũng làm được )
   Có 30 giá trị. Có 6 giá trị khác nhau.
b/  
Giá trị (x)       5        7           8          9          10            14 
Tần số (n)     4        3            8         8           4              3         N= 30

c)  Tính Trung bình cộng:
_
X = 4.5+7.3+8.8+9.8+10.4+14.3 / 30= 259:30 = 8,6 phút

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich

\(C\left(x\right)=2x^2+4x+7=2x^2+4x+2+5\)

\(C\left(x\right)=2\left(x^2+2x+1\right)+5=2\left(x^2+x+x+1\right)+5\)

\(C\left(x\right)=2\left[x\left(x+1\right)+\left(x+1\right)\right]+5\)

\(C\left(x\right)=2\left(x+1\right)^2+5\). Vì \(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+5\ge5>0\forall x\)

=> Đa thức không có nghiệm

( Nếu là lớp 8 thì dùng hằng đẳng thức ra ngay nhưng mà bạn lớp 7 thì mình phân tích ra nhé )

26 tháng 4 2019

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+1\ge1\forall x\)

Vậy đa thức p(x) vô nghiệm

26 tháng 4 2019

Ta có : \(P\left(x\right)=x^2+1\)

 => \(x^2+1=0\)

=> \(x^2=\left(-1\right)\)

=> \(P\left(x\right)=x^2+1\)  Vô nghiệm

6 tháng 8 2019

\(C\left(x\right)=\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}\)

\(\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}=0\)

\(4x-3-2\left(5-3x\right)+2=0\)

\(4x-1-2\left(5-3x\right)=0\)

\(4x-1-10+6x=0\)

\(10x-11=0\)

\(10x=0+11\)

\(10x=11\)

\(x=\frac{11}{10}\)

8 tháng 5 2018

CMR thằng ngô trung hiếu                                                        bú c-u

avt2597164_60by60.jpg
8 tháng 5 2018

\(4x^2+4x+6=\left(4x^2+2x\right)+\left(2x+1\right)+5\)

\(=2x\left(2x+1\right)+\left(2x+1\right)+5\)

\(=\left(2x+1\right)\left(2x+1\right)+5\)

\(=\left(2x+1\right)^2+5\)

Có \(\left(2x+1\right)^2\ge0\)

=> \(\left(2x+1\right)^2+5\ge5\)

=> \(\left(2x+1\right)^2+5\ne0\)

=> \(4x^2+4x+6\ne0\)

Vậy đa thức trên vô nghiệm