K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

A B C D O 1 2 1 2 1 2

1. Xét tam giác ABD và tam giác ABC có: 

AB chung 

AD=BC ( ABCD là hình thang cân)

\(\widehat{A}=\widehat{B}\)( hai góc đối đỉnh)

=> Tam giác ABD= Tam giác ABC

2.

Ta có:  Tam giác ABD= Tam giác ABC ( theo câu 1)

=> \(\widehat{A_1}=\widehat{B_2}\)

=> Tam giác OAB cân

=> OA=OB

3. 

Ta có \(\widehat{D}=\widehat{C}\)( ABCD là hình thang cân)

=> \(\widehat{D_1}+\widehat{D_2}=\widehat{C_1}+\widehat{C_2}\)

Mà \(\widehat{D_1}=\widehat{C_1}\)( Tam giác ABD= Tam giác ABC)

=> \(\widehat{D_2}=\widehat{C_2}\)

=> Tam giác DOC cân tại O

=> DO=CO

24 tháng 6 2019

Bài toán 8 mà sao giống toán 7 thế nhỉ?

A B C D O

a) Trong hình thang câng hai cạnh bên bằng nhau (AD = BC)

Hai góc kề ở 1 đáy bằng nhau nên theo tính chất hai đoạn thẳng song song suy ra hai góc kề ở đáy kia cũng bằng nhau.

Suy ra \(\widehat{A}=\widehat{B};\widehat{C}=\widehat{D}\)

Xét tam giác ABD và tam giác BAC có:

AD = BC (gt)

\(\widehat{A}=\widehat{B}\)

\(AB:\text{ cạnh chung }\)

\(\Rightarrow\Delta ABD=\Delta BAC\)

b) Do \(\Delta ABD=\Delta BAC\Rightarrow\widehat{DBA}=\widehat{BAC}\left(\text{hai góc tương ứng}\right)\)

\(\Rightarrow\Delta OAB\text{ cân tại O }\Rightarrow OA=OB\) (theo tính chất tam giác cân)

c) Cũng do \(\Delta ABD=\Delta BAC\Rightarrow BD=AC\Leftrightarrow OB+OD=OA+OC\)

Theo kết quả câu b ta có OA = OB suy ra OD = OC (đpcm)

7 tháng 9 2019

vì oa=ob

=>tam giác aob là tam giác cân tại o (đn tam giác cân)

=>góc oab=góc oba

   mà  ab//cd 

=> abcd là hình thang cân

đúng thì k cho mik vs ạ

24 tháng 6 2019

Câu hỏi của Nguyễn Thị Phương Uyên - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo link trên.

1 tháng 9 2021

a: Xét ΔACD và ΔBDC có

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: ˆACD=ˆBDCACD^=BDC^

hay ˆODC=ˆOCDODC^=OCD^

Xét ΔOCD có ˆODC=ˆOCDODC^=OCD^

nên ΔOCD cân tại O

Suy ra: OC=OD

Ta có: AO+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

12 tháng 2 2020

Xét △ABD và △BAC có :

   AD = BC (gt)

   AB chung

   ^A = ^B (gt)

\(\Rightarrow\)△ABD = △BAC (cgc)

\(\Rightarrow\)^ADB = ^ BCA

Mà ^ADC = ^BCD

\(\Rightarrow\)^ODC = ^OCD

Lại có : AC ⊥ BD

\(\Rightarrow\)△OCD vuông cân tại O

Chứng minh tương tự với △OAB :

\(\Rightarrow\)ĐPCM

12 tháng 2 2020

Áp dụng định lí Pitago vào  △OAB vuông tại O có :

Có: OA2  + OB2 = AB2

=> 2OA2 = 16

=> OA = \(2\sqrt{2}\)cm

Tương tự: OD = \(4\sqrt{2}\)cm

Kẻ MN đi qua O và vuông góc với AB(tại M) và CD(tại N)

=> M là trung điểm AB ; N là trung điểm CD (vì ABCD là hình thang cân)

Có: OM2 = OA2 - AM2 = \(\left(2\sqrt{2}\right)^2-2^2\) = 8 - 4 = 4 cm

=> OM = 2cm

Tương tự chứng minh :

=> ON = 4 cm

=> MN = 6 cm

Vậy SABCD = \(\frac{\left(4+8\right).6}{2}=36\)  cm2

d: OA+OC=AC

OB+OD=BD

mà OA=OC và AC=BD

nên OC=OD

OC=OD

EC=ED

=>OE là trung trực của CD

=>O,E,trung điểm của CD thẳng hàng

Bài 5: 

Xét ΔBAC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{ACD}\)

nên \(\widehat{ACB}=\widehat{ACD}\)

hay CA là tia phân giác của \(\widehat{BCD}\)