Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có A=\(\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)(1)
B=\(\frac{2011}{2012}+\frac{2012}{2013}\left(2\right)\)
so sánh 1 và 2 ta có A<B
B=2011+2012/2012+2013
=2011/2012+2013 +2012/2012+2013<2011/2012 +2012/2013=a
vậy........................
\(B=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}<\frac{2011}{2012}+\frac{2012}{2013}=A\)
vậy A>B
\(A=\frac{2011}{2012}+\frac{2012}{2013}\) \(và\) \(B=\frac{2011+2012}{2012+2013}\)
\(Ta\) \(có\) \(:\) \(B=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
\(B=\frac{2011}{4025}+\frac{2012}{4025}\)
\(Vì\) \(\frac{2011}{2012}>\frac{2011}{4025}và\frac{2012}{2013}>\frac{2012}{4025}\)
\(Nên\) \(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{4025}+\frac{2012}{4025}\)
\(Vậy\) \(A=\frac{2011}{2012}+\frac{2012}{2013}>B=\frac{2011+2012}{2012+2013}\)
A=\(\frac{-199}{10^{2011}}\)
B=\(\frac{-109}{10^{2011}}\)
Dễ dàng so sánh được A<B
Ta có A=2010/2011+2011/2012
=(1-1/2011)+(1-1/2012)
=1-1/2011+1-1/2012
=(1+1)-(1/2011+1/2012)
=2-(1/2011+1/2012)
=>A<2
Vì 1/2011+1/2012<1/2+1/2=1
=>2>A>1(1)
Ta có B=(2010+2011)/(2011+2012)
=(2011+2012-2)/(2011+2012)
=1-2/(2011+2012)
=>B<1(2)
Từ (1) và (2) => A>B
A=\(\frac{2012^{2012}+1}{2012^{2013}+1}\)
\(\Rightarrow\)A<\(\frac{2012^{2012}+1+2011}{2012^{2013}+1+2011}\)
<\(\frac{2012^{2012}+2012}{2012^{2013}+2012}\)
<\(\frac{2012\left(2012^{2011}+1\right)}{2012\left(2012^{2012}+1\right)}\)
<\(\frac{2012^{2011}+1}{2012^{2012}+1}\)
<B
Vậy A<B
a) \(\frac{2^{10}+1}{2^{10}-1}\)và \(\frac{2^{10}-1}{2^{10}-3}\)
Ta có chính chất phân số trung gian là \(\frac{2^{10}+1}{2^{10}-3}\)
\(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}\) ; \(\frac{2^{10}-1}{2^{10}-3}< \frac{2^{10}+1}{2^{10}-3}\)
Vì \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}>\frac{2^{10}-1}{2^{10}-3}\)
Nên \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}-1}{2^{10}-3}\)
b) \(A=\frac{2011}{2012}+\frac{2012}{2013}\)và \(B=\frac{2011+2012}{2012+2013}\)
Ta có : \(A=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}=B\)
Vậy A > B
Có gì sai cho sorry
a,
\(\frac{2^{10}+1}{2^{10}-1}=1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}=\frac{2^{10}-1}{2^{10}-3}\)
b,
\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)
\(b)\) Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)
Vậy \(\frac{2009^{2009}+1}{2009^{2010}+1}>\frac{2009^{1010}-2}{2009^{2011}-2}\)
Chúc bạn học tốt ~
Àk mình còn thiếu một điều kiện nữa xin lỗi nhé :
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Bạn thêm vào nhé
b,Ta có
\(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
\(\Rightarrow P>Q\)
\(A=\frac{-10}{20}+\frac{-10}{30}+\frac{-10}{42}+\frac{-10}{56}+\frac{-10}{72}+\frac{-10}{90}+\frac{-10}{110}\)
\(=-10\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\right)\)
\(=-10\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\right)\)
\(=-10\left(\frac{1}{4}-\frac{1}{11}\right)\)
\(=\frac{-35}{22}\)