K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔMNP có

A là trung điểm của MN

B là trung điểm của NP

Do đó: AB là đường trung bình của ΔMNP

Suy ra: \(AB=\dfrac{MP}{2}=\dfrac{20}{2}=10\left(cm\right)\)

Xét ΔMNP có

B là trung điểm của NP

C là trung điểm của MP

Do đó: BC là đường trung bình của ΔMNP

Suy ra: \(BC=\dfrac{MN}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Xét ΔMNP có 

A là trung điểm của MN

C là trung điểm của MP

Do đó: AC là đường trung bình của ΔMNP

Suy ra: \(AC=\dfrac{NP}{2}=\dfrac{18}{2}=9\left(cm\right)\)

a: Ta có: Q và A đối xứng với nhau qua MN

nên MN là đường trung trực của QA

=>MN vuông góc với QA tại trung điểm của QA

Ta có: Q và B đối xứng với nhau qua MP

nên MP là đường trung trực của QB

=>MP vuông góc với QB tại trung điểm của QB

Xét tứ giác MRQS có 

\(\widehat{MRQ}=\widehat{MSQ}=\widehat{SMR}=90^0\)

Do đó: MRQS là hình chữ nhật

b: Xét ΔMNP có

Q là trung điểm của NP

QS//MN

Do đó: S là trung điểm của MP

Xét tứ giác MQPB có 

S là trung điểm của MP

S là trung điểm của QB

Do đó: MQPB là hình bình hành

mà QM=QP

nên MQPB là hình thoi

17 tháng 4 2018

a)*Vì \(\Delta MNP\) vuông tại M

\(\Rightarrow MN^2+MP^2=NP^2\)

\(\Rightarrow6^2+8^2=NP^2\)

\(\Rightarrow NP^2=100\)\(\Rightarrow NP=\sqrt{100}=10cm\)

*Xét 2\(\Delta\)vuông HMNHPM có

\(\widehat{HMN}=\widehat{NPM}\)(cùng phụ \(\widehat{MNP}\))

\(\Rightarrow\Delta HMN\sim\Delta HPM\)

8 tháng 9 2016

Đề này trong violympic hả??? năm ngoài cấp thành phố cx có bài tương tự như dzậy á ^^

\(5\sqrt{2}\approx7\)

Vẽ tam giác với MN = MP = 5 cm và NP = 7 cm ra sẽ thấy MNP là tam giác vuông cân. 

Vậy M = 900

8 tháng 9 2016

ukm vòng 1 á

1 tháng 3 2020

Có MP//BC nên \(\frac{AM}{AB}=\frac{AP}{AC}\Rightarrow AP=\frac{4.8}{6}=\frac{16}{3}\)

NP=AP-AN=16/3-3=?

13 tháng 12 2017

a) Ta có :

Diện tích tam giác ABC = 1 /2 . BC . AH

dIỆN TÍCH TAM GIÁC abc = 1/2 . AB . AC

=> 1/2 . BC . AH = 1/2 . AB . AC

=> AH . BC = AB. AC

b) Trong tứ giác AMNP , có :

a = 90 0 ( gt )

n = 90 0 ( mn vuông góc ab )

p= 90 0 ( mp vuông góc ac )

=> amnp là hcn ( dhnb )

14 tháng 12 2017

còn câu c đâu bn???

câu đó mik mới hoang mang đó!

13 tháng 8
Các bước giải:
  1. Sử dụng định lý Thales cho các đường thẳng song song:
    • Vì \(D F\) song song với \(N P\) (\(D F \parallel N P\)) và \(F\) thuộc \(M P\)\(D\) thuộc \(M N\), ta có tam giác \(M D F\) đồng dạng với tam giác \(M N P\).
    • Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{M D}{M N} = \frac{M F}{M P} = \frac{D F}{N P}\)
    • Tương tự, vì \(E G\) song song với \(N P\) (\(E G \parallel N P\)) và \(G\) thuộc \(M P\)\(E\) thuộc \(M N\), ta có tam giác \(M E G\) đồng dạng với tam giác \(M N P\).
    • Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{M E}{M N} = \frac{M G}{M P} = \frac{E G}{N P}\)
  2. Sử dụng giả thiết \(M D = N E\):
    • Ta có \(M N = M D + D E + E N\).
    • Thay \(N E = M D\) vào, ta có \(M N = M D + D E + M D = 2 M D + D E\).
    • Từ đó suy ra \(D E = M N - 2 M D\).
    • Cũng từ \(M N = 2 M D + D E\), ta có \(M D = \frac{M N - D E}{2}\).
    • Và \(N E = \frac{M N - D E}{2}\).
  3. Xét tỉ lệ của các đoạn thẳng:
    • Từ \(\frac{M D}{M N} = \frac{D F}{N P}\), ta có \(D F = N P \cdot \frac{M D}{M N}\).
    • Từ \(\frac{M E}{M N} = \frac{E G}{N P}\), ta có \(E G = N P \cdot \frac{M E}{M N}\).
  4. Sử dụng giả thiết \(G I \parallel M N\):
    • Vì \(G I \parallel M N\) và \(I\) thuộc \(N P\)\(G\) thuộc \(M P\), ta có tam giác \(P G I\) đồng dạng với tam giác \(P N M\).
    • Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{P G}{P M} = \frac{P I}{P N} = \frac{G I}{M N}\)
  5. Liên hệ các đoạn thẳng \(D F\)  \(I P\):
    • Chúng ta cần chứng minh \(D F = I P\).
    • Từ \(D F = N P \cdot \frac{M D}{M N}\), ta cần chứng minh \(I P = N P \cdot \frac{M D}{M N}\).
    • Điều này có nghĩa là ta cần chứng minh \(\frac{P I}{P N} = \frac{M D}{M N}\).
    • Chúng ta biết \(\frac{P I}{P N} = \frac{P G}{P M}\). Vậy ta cần chứng minh \(\frac{P G}{P M} = \frac{M D}{M N}\).
  6. Tính toán \(P G\):
    • Ta có \(M G\) là một đoạn thẳng trên \(M P\).
    • Ta có \(M P = M F + F G + G P\) hoặc \(M P = M G + G P\).
    • Từ \(\frac{M E}{M N} = \frac{M G}{M P}\), ta có \(M G = M P \cdot \frac{M E}{M N}\).
    • Do đó, \(P G = M P - M G = M P - M P \cdot \frac{M E}{M N} = M P \left(\right. 1 - \frac{M E}{M N} \left.\right) = M P \cdot \frac{M N - M E}{M N}\).
    • Vì \(M N - M E = M D\), nên \(P G = M P \cdot \frac{M D}{M N}\).
  7. Kiểm tra tỉ lệ \(\frac{P G}{P M}\):
    • Thay biểu thức của \(P G\) vào tỉ lệ \(\frac{P G}{P M}\):\(\frac{P G}{P M} = \frac{M P \cdot \frac{M D}{M N}}{M P} = \frac{M D}{M N}\)
  8. Kết luận:
    • Ta có \(\frac{P I}{P N} = \frac{P G}{P M}\) (từ bước 4).
    • Ta vừa chứng minh được \(\frac{P G}{P M} = \frac{M D}{M N}\) (từ bước 7).
    • Do đó, \(\frac{P I}{P N} = \frac{M D}{M N}\).
    • Nhân cả hai vế với \(N P\), ta được \(P I = N P \cdot \frac{M D}{M N}\).
    • Mà ta đã có \(D F = N P \cdot \frac{M D}{M N}\) (từ bước 1).
    • Vì vậy, \(D F = I P\).
Bài toán đã được chứng minh.

ta sẽ chứng minh rằng DF = IP với các điều kiện sau :

-tam giác MNP

-trên cạnh MN, lấy các điểm D và E sao cho MD=NE

-qua D và E , vẽ các đường thẳng song song với NP ,cắt MP tại F và M tương ứng

-từ G , kẻ đường thẳng GI // MN , cắt NP tại I

AH
Akai Haruma
Giáo viên
9 tháng 4 2018

Lời giải:

a)

Vì $M, N$ lần lượt là trung điểm của $AB,AC$ nên:

\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{1}{2}\)

Xét tam giác $AMN$ và $ABC$ có:

\(\left\{\begin{matrix} \text{chung góc A}\\ \frac{AM}{AB}=\frac{AN}{AC}\end{matrix}\right.\Rightarrow \triangle AMN\sim \triangle ABC\) (c.g.c)

b)

Áp dụng định lý Pitago cho tam giác vuông $ABC$:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=15\) (cm)

Ta có:

\(\frac{AB.AC}{2}=S_{ABC}=\frac{AH.BC}{2}\)

\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{9.12}{15}=7,2\) (cm)

c)

Vì \(NP\parallel AB\) nên áp dụng định lý Ta-lét ta có:

\(\frac{NP}{AB}=\frac{CN}{CA}=\frac{1}{2}\Rightarrow NP=\frac{AB}{2}; NC=\frac{AC}{2}\)

Mặt khác, \(NP\parallel AB, AB\perp AC\Rightarrow NP\perp AC\)

Do đó:

\(S_{NPC}=\frac{NP.NC}{2}=\frac{\frac{AB}{2}.\frac{AC}{2}}{2}=\frac{AB.AC}{8}\)

\(S_{ABC}=\frac{AB.AC}{2}\)

\(\Rightarrow \frac{S_{NPC}}{S_{ABC}}=\frac{AB.AC}{8}: \frac{AB.AC}{2}=\frac{1}{4}\)