Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(a,b\right)=30\) nên ta có: \(\hept{\begin{cases}a=30m\\b=30n\\\left(m,n\right)=1\end{cases}}\)
Mà \(a+b=360\)
\(\Rightarrow30m+30n=360\)
\(\Rightarrow30\left(m+n\right)=360\)
\(\Rightarrow m+n=12\)
Lại có: \(\left(m,n\right)=1\)
Ta có bảng sau:
m 1 11 5 7
n 11 1 7 5
a 30 330 150 210
b 330 30 210 150
Vậy \(\left(a;b\right)\in\left\{\left(30;330\right);\left(330;30\right);\left(150;210\right);\left(210;150\right)\right\}\).
Bài 1:
18x + 3 ⋮ 7
=> 18x + 3 - 21 ⋮ 7
=> 18x - 18
=> 18(x - 1) ⋮ 7
Vì 18 ⋮̸ 7 nên để 18(x - 1) ⋮ 7 thì x - 1 ⋮ 7
=> x - 1 \(\in\)B(7)
=> x - 1 \(\in\)7k (k \(\in\)N)
=> x = 7k + 1 (k \(\in\)N)
Vậy x có dạng 7k + 1 (k \(\in\)N)
Bài 2:
ƯCLN(a,b) = 60 => \(\hept{\begin{cases}a=60m\\b=60n\end{cases}\left(m;n\in N\right);\left(m,n\right)=1}\)
Ta có: a + b = 360
60m + 60n = 360
60(m + n) = 360
m + n = 360 : 60
m + n = 6
Vì (m,n) = 1 nên ta bỏ các giá trị m;n chẵn
Ta có bảng sau:
m | 1 | 3 | 5 |
n | 5 | 3 | 1 |
a | 6 | 18 | 30 |
b | 30 | 18 | 6 |
Vậy các cặp giá trị (a;b) thỏa mãn là (6;30) ; (18;18) ; (30;6)