K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

Bài 68 :

a ) \(\sqrt[3]{27}-\sqrt[3]{8}-\sqrt[3]{125}=3-2-5=-4\)

b ) \(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}=\sqrt[3]{\dfrac{135}{5}}-\sqrt[3]{54.4}=\sqrt[3]{27}-\sqrt[3]{216}=3-6=-3\)

5 tháng 10 2017

Bài 69 :

a ) Ta có : \(\left\{{}\begin{matrix}3^3=27\\\left(\sqrt[3]{123}\right)^3=123\end{matrix}\right.\)

Vì 27 < 123 nên suy ra \(3< \sqrt[3]{123}\)

Vậy \(3< \sqrt[3]{123}\)

22 tháng 4 2017

a) 3\(\sqrt{ }\)27 – 3\(\sqrt{ }\)-8 – 3\(\sqrt{ }\)125 = 3\(\sqrt{ }\)33 – 3\(\sqrt{ }\)(-2)3 – 3\(\sqrt{ }\)53 = 3 – (-2) – 5 = 0

b) = \(\sqrt{ }\)27 – 3\(\sqrt{ }\)216 = 3\(\sqrt{ }\)33 – 3\(\sqrt{ }\)(6)3 = 3 – 6 = -3

25 tháng 4 2021

LG a

3√27−3√−8−3√125273−−83−1253

Phương pháp giải:

Tính từng căn bậc ba rồi thực hiện phép tính

Lời giải chi tiết:

3√27−3√−8−3√125=3√33−3√(−2)3−3√53273−−83−1253=333−(−2)33−533

=3−(−2)−5=3−(−2)−5

=3+2−5=0=3+2−5=0.

LG b

 3√1353√5−3√54.3√4135353−543.43

Phương pháp giải:

Sử dụng các công thức:

3√a.b=3√a.3√ba.b3=a3.b3.

3√ab=3√a3√bab3=a3b3,  với b≠0b≠0.

Lời giải chi tiết:

3√1353√5−3√54.3√4=3√27.53√5−3√54.4135353−543.43=27.5353−54.43

=3√5.3√273√5−3√216=53.27353−2163

=3√27−3√216=273−2163

=3√33−3√63=333−633

=3−6=−3=3−6=−3.

19 tháng 5 2021

a) \sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}=3-(-2)-5=0.

b) \dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54} \cdot \sqrt[3]{4}=\sqrt[3]{\dfrac{135}{5}}-\sqrt[3]{54.4}=3-6=-3.

19 tháng 6 2017

a) \(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)

= \(\sqrt{3}-8\sqrt{3}+15\sqrt{3}-24\sqrt{3}\)

= \(-16\sqrt{3}\)

b) \(\left(a.\sqrt{\dfrac{a}{b}}+2\sqrt{ab}+b.\sqrt{\dfrac{b}{a}}\right)\sqrt{\dfrac{a}{b}}\)

= \(\dfrac{a^2}{b}+2a+b\) = \(\dfrac{a^2+\left(2a+b\right)b}{b}\) = \(\dfrac{a^2+2ab+b^2}{b}\) = \(\dfrac{\left(a+b\right)^2}{b}\)

c) \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\) = \(3+2-5=0\)

d) \(3+\sqrt{18}+\sqrt{3}+\sqrt{8}\) = \(3+3\sqrt{2}+\sqrt{3}+2\sqrt{2}\)

= \(3+\sqrt{3}+5\sqrt{2}\)

31 tháng 10 2021

a) \(\Leftrightarrow A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)

b) \(\Leftrightarrow B=\sqrt{7-2\sqrt{12}}+\sqrt{12+2\sqrt{27}}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}=2-\sqrt{3}+3+\sqrt{3}=5\)

c) \(\Leftrightarrow C=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{6}{4}=\dfrac{3}{2}\)

d) \(\Leftrightarrow D=3-\left(-2\right)-5=0\)

b: Ta có: \(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}\cdot\sqrt[3]{4}\)

\(=\sqrt[3]{\dfrac{135}{5}}-\sqrt[3]{54\cdot4}\)

=3-6

=-3

21 tháng 12 2023

Bài 1:

a: \(5\sqrt{8}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)

\(=5\cdot2\sqrt{2}-4\cdot3\sqrt{3}-2\cdot5\sqrt{3}+6\sqrt{3}\)

\(=10\sqrt{2}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}\)

\(=10\sqrt{2}-16\sqrt{3}\)

b: \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(1-\sqrt{6}\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|1-\sqrt{6}\right|\)

\(=3-\sqrt{6}+\sqrt{6}-1\)

=3-1=2

c: \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\dfrac{1}{4+\sqrt{15}}\)

\(=\dfrac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}+\dfrac{1\left(4-\sqrt{15}\right)}{16-15}\)

\(=\sqrt{15}+4-\sqrt{15}=4\)

d: \(\dfrac{2\sqrt{3-\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)

\(=\dfrac{\sqrt{3-\sqrt{5}}\cdot\sqrt{2}\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}\left(\sqrt{3}+1\right)}{2\left(\sqrt{3}+1\right)}\)

\(=\dfrac{\sqrt{6-2\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}}{2}\)

\(=\sqrt{\left(\sqrt{5}-1\right)^2}\cdot\dfrac{\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}}{2}\)

\(=3+\sqrt{5}-\dfrac{\sqrt{5}}{2}=3+\dfrac{\sqrt{5}}{2}\)

Bài 2:

Vẽ đồ thị:

loading...

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x-4=-3x+3\)

=>\(\dfrac{1}{2}x+3x=3+4\)

=>\(\dfrac{7}{2}x=7\)

=>x=2

Thay x=2 vào y=-3x+3, ta được:

\(y=-3\cdot2+3=-3\)

Vậy: (d1) cắt (d2) tại A(2;-3)

5 tháng 7 2021

Bài 1 :

a, ĐKXĐ : \(\dfrac{2x+1}{x^2+1}\ge0\)

\(x^2+1\ge1>0\)

\(\Rightarrow2x+1\ge0\)

\(\Rightarrow x\ge-\dfrac{1}{2}\)

Vậy ...

b, Ta có : \(\sqrt[3]{-27}+\sqrt[3]{64}-\sqrt[3]{-\dfrac{128}{2}}\)

\(=-3+4-\left(-4\right)=-3+4+4=5\)

5 tháng 7 2021

Bài 2 :

\(a,=2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}\)

\(=\sqrt{5}\left(2+6+5-12\right)=\sqrt{2}\)

\(b,=\sqrt{5}+\sqrt{5}+\left|\sqrt{5}-2\right|\)

\(=2\sqrt{5}+\sqrt{5}-2=3\sqrt{5}-2\)

\(c,=\dfrac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)

\(=\dfrac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\)

\(=3\)

18 tháng 11 2017

a)\(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\)

\(=3+2-5\)

\(=0\)

b)\(\frac{\sqrt[3]{153}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\)

\(=\sqrt[3]{\frac{153}{5}}-\sqrt[3]{54.4}\)

\(=\sqrt[3]{\frac{153}{5}}-6\)

Theo mình câu b như vậy

18 tháng 11 2017

pham trung thanh câu b bn làm thiếu hay sao ý? Theo tôi, cả bài làm như thế này.

Giải:

a, \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\)

\(=\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{12}=3+2-5\)

\(=0\)

b, \(\frac{\sqrt[3]{153}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\)

\(=\sqrt[3]{\frac{135}{5}}-\sqrt[3]{54.4}\)

\(=\sqrt[3]{27}-\sqrt[3]{216}\)

\(=3-6\)

\(=-3\)

27 tháng 9 2023

`a)\root[3]{135}/\root[3]{5}-\root[3]{54}.\root[3]{4}`

`=\root[3]{135/5}-\root[3]{54.4}`

`=\root[3]{27}-\root[3]{216}`

`=3-6=-3`

`b)(\root[3]{25}-\root[3]{10}+\root[3]{4})(\root[3]{5}+\root[3]{2})`

`=5+\root[3]{50}-\root[3]{50}-\root[3]{20}+\root[3]{20}+2`

`=7`.