Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) A=7/10.11+7/11.12+7/12.13+...+7/69.70
A=7.(1/10.11+1/11.12+1/12.13+...+1/69.70)
A= 7.(1/10-1/11+1/11-1/12+1/12-1/13+...+1/69-1/70)
A= 7.(1/10-1/70)
A=7.3/35=3/5
2)B=1/25.27+1/27.29+1/29.31+...+1/73.1/75
B=1/25-1/27+1/27-1/29+1/29-1/31+...+1/73-1/75
B=1/25-1/75=2/75
A = 7/ 10.11 + 7/ 11.12 + 7/ 12.13 + .... + 7/69.70
(1/7).A=1/10.11+1/11.12+...+1/69.70
=1/10-1/11+1/11-1/12+...+1/69-1/70
=1/10-1/70=3/35
=>A=7.(3/35)
=3/5
2 ) B = 1/ 25.27 + 1/ 27.29 + 1/29.31+ ......+ 1/ 73.75
=>(1/2).B=2/25.27+...+2.73.75
=1/25-1/27+...+1/73-1/75
=1/25-1/75
=2/75
=>B=4/75
`=>2B=(2)/(25.27)+(2)/(27.29)+(2)/(29.31)+....+(2)/(73.75)`
`=>2B=(1)/(25)-(1)/(27)+(1)/(27)-(1)/(29)+(1)/(29)-(1)/(31)+.....+(1)/(73)-(1)/(75)`
`=>2B=(1)/(25)-(1)/(75)`
`=>2B=(3)/(75)-(1)/(75)=(2)/(75)`
`=>B=(2)/(75):2`
`=>B=1/75`
\(B=\dfrac{1}{25.27}+\dfrac{1}{27.29}+\dfrac{1}{29.31}+...+\dfrac{1}{73.75}\)
\(\Rightarrow2B=\dfrac{2}{25.27}+\dfrac{2}{27.29}+...+\dfrac{2}{73.75}=\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\)\(\Rightarrow2B=\dfrac{1}{25}-\dfrac{1}{75}=\dfrac{2}{75}\Rightarrow B=\dfrac{1}{75}\)
\(A=\dfrac{7}{10.11}+\dfrac{7}{11.12}+\dfrac{7}{12.13}+...+\dfrac{7}{69.70}\)
\(A=7\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)
\(A=7\left(\dfrac{1}{10}-\dfrac{1}{70}\right)\)
\(A=7\left(\dfrac{3}{35}\right)\)
\(A=\dfrac{3}{5}\)
Cách giải vậy đó
Gọi \(\dfrac{1}{25.27}+\dfrac{1}{27.29}+\dfrac{1}{29.31}+...+\dfrac{1}{73.75}\)
là A, ta có
\(A=\dfrac{1}{25.27}+\dfrac{1}{27.29}+\dfrac{1}{29.31}+...+\dfrac{1}{73.75}\)
\(\Rightarrow2.A=\dfrac{2}{25.27}+\dfrac{2}{27.29}+\dfrac{2}{29.31}+...+\dfrac{2}{73.75}\)\(\Rightarrow2.A=\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\)\(\Rightarrow2.A=\dfrac{1}{25}-\dfrac{1}{75}\)
\(\Rightarrow2.A=\dfrac{2}{75}\)
\(\Rightarrow A=\dfrac{2}{75}\div2\)
\(\Rightarrow A=\dfrac{1}{75}\)
KL: Vậy A =\(\dfrac{1}{75}\)
\(A=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)
\(A=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\)
\(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\)
\(A=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(A=2.\dfrac{3}{16}\)
\(A=\dfrac{3}{8}\)
\(B=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{107.111}\)
\(B=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{107}-\dfrac{1}{111}\)
\(B=\dfrac{1}{3}-\dfrac{1}{111}\)
\(B=\dfrac{12}{37}\)
A = \(\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
=\(7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
=\(7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
=\(7\left(\frac{1}{10}-\frac{1}{70}\right)\)
=\(7.\frac{3}{35}\)
=\(\frac{3}{5}\)
B=\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
=\(\frac{1}{2}\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
=\(\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
=\(\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)\)
=\(\frac{1}{2}.\frac{2}{75}\)
=\(\frac{1}{75}\)
B=1/2. (2/25.27+2/27.29+2/29.31+....+2/73.75) B=1/2. (1/25-1/27+1/27-1/29+1/29-1/31+....+1/73-1/75) B=1/2. (1/25-1/75) B=1/2. 2/75 B=1/75
\(3A=\dfrac{3}{8.11}+\dfrac{3}{18.21}+..+\dfrac{3}{197.200}\)
\(A=7\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)
\(=7\left(\dfrac{1}{10}-\dfrac{1}{70}\right)=\dfrac{7.60}{700}=\dfrac{420}{700}=\dfrac{3}{5}\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{25}-\dfrac{1}{75}\right)=\dfrac{1}{75}\)