\(\dfrac{20n+13}{4n+3}\)

a) A có giá trị nhỏ nh...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

Với n \(\in\) Z , ta có : A= \(\dfrac{20n+13}{4n+3}\)

Gọi Ước chung lớn nhất của 20n+13 và 4n+3 là d ( d \(\in\) Z*)

\(\Rightarrow\left\{{}\begin{matrix}20n+13⋮d\\4n+3⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+13⋮d\\5\left(4n+3\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+13⋮d\\20n+15⋮d\end{matrix}\right.\)

\(\Rightarrow\) (20n + 15) - (20n + 13)\(⋮\) d

\(\Rightarrow\) 20n + 15 - 20n - 13\(⋮\) d

\(\Rightarrow2⋮d\)

\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà 20n+13 và 4n+3 ko có số nào chia hết cho 2

=> d = \(\pm1\)

7 tháng 8 2017

\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)

a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3 

<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

<=>\(2n\in\left\{-8;-4;-2;2\right\}\)

<=>\(n\in\left\{-4;-2;-1;1\right\}\)

b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\)  nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên

<=> 2n+3=-1 <=> n=-2

\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2

phần giá trị nhỏ nhất bạn làm nốt

25 tháng 8 2016

a) \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)

Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\Rightarrow\frac{6}{5n-3}\in Z\Rightarrow5n-3\in U\left(6\right)\)

Ta có bảng sau:

  5n - 3  -6  -3  -2  -1   1  2   3  6
    n  -0,6  0 0,2 0,4 0,8  1  1,2  1,8

Mà n thuộc Z  => n = { 0 ; 1 }

b) Để A lớn nhất thì \(2+\frac{6}{5n-3}\)có giá trị lớn nhất  => \(\frac{6}{5n-3}\)lớn nhất 

=> 5n - 3 nguyên dương nhỏ nhất ; 5n - 3 thuộc ước của 6 và n thuộc Z

=> 5n - 3 = 2  => x = 1 và \(\frac{6}{5n-3}=\frac{6}{2}=3\)  

Thay \(3=\frac{6}{5n-3}\)vào \(A=2+\frac{6}{5n-3}\)ta có:

\(A=2+3=5\)

Vậy giá trị lớn nhất của A là 5 khi x = 1

26 tháng 8 2016

a, Ta có : \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}\)

                             \(=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)

                             \(=2+\frac{6}{5n-3}\)

Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\)

\(\Rightarrow\frac{6}{5n-3}\in Z\)

\(\Rightarrow6\)chia hết cho\(5n-3\)

\(\Rightarrow5n-3\inƯ\left(6\right)\)

Ta có bảng sau :

       
       
       
5n-31-12-23-3
5n425160
n0,80,410,21,20

Vì \(n\in Z\)=> \(n\in\left\{0;1\right\}\)

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
19 tháng 3 2018

\(b)\) Ta có : 

\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại ) 

Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN

\(\Rightarrow\)\(3n+2=1\)

\(\Rightarrow\)\(3n=-1\)

\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) ) 

\(\Rightarrow\)\(3n+2=2\)

\(\Rightarrow\)\(3n=0\)

\(\Rightarrow\)\(n=0\)

Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)

Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

\(a)\) Ta có : 

\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)

Để \(A\inℤ\)  thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3n+2\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)

Vậy \(n=1\) hoặc \(n=-1\)

Chúc bạn học tốt ~