Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của thửa ruộng đó(Điều kiện: a>0; b>0; \(a\ge b\))
Vì chiều dài lớn hơn chiều rộng 5m nên ta có phương trình: \(a-b=5\)(1)
Diện tích ban đầu của thửa ruộng là: \(a\cdot b\left(m^2\right)\)
Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 4m thì diện tích mảnh đất giảm đi \(180m^2\)nên ta có phương trình:
\(\left(a-5\right)\left(b-4\right)=ab-180\)
\(\Leftrightarrow ab-4a-5b+20-ab+180=0\)
\(\Leftrightarrow-4a-5b+200=0\)
\(\Leftrightarrow-4a-5b=-200\)
\(\Leftrightarrow4a+5b=200\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-b=5\\4a+5b=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a-4b=20\\4a+5b=200\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-9b=-180\\a-b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=20\\a=5+b=5+20=25\end{matrix}\right.\)(thỏa ĐK)
Diện tích của thửa ruộng đó là:
\(S=a\cdot b=25\cdot20=500\left(m^2\right)\)
Bài 11:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 90m nên ta có phương trình:
\(2\cdot\left(x+y\right)=90\)
\(\Leftrightarrow x+y=45\)(1)
Diện tích ban đầu của mảnh đất là: \(xy\left(m^2\right)\)
Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 2m thì diện tích giảm 140m2 nên ta có phương trình:
\(\left(x-5\right)\left(y-2\right)=xy-140\)
\(\Leftrightarrow xy-2x-5y+10-xy+140=0\)
\(\Leftrightarrow-2x-5y+150=0\)
\(\Leftrightarrow-2x-5y=-150\)
\(\Leftrightarrow2x+5y=150\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=45\\2x+5y=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y=90\\2x+5y=150\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-60\\x+y=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=20\\x=45-y=45-20=25\end{matrix}\right.\)(thỏa ĐK)
Diện tích mảnh đất là:
\(x\cdot y=25\cdot20=500\left(m^2\right)\)
Vậy: Diện tích mảnh đất là 500m2
Bài 12:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 80m nên ta có phương trình:
\(2\cdot\left(x+y\right)=80\)
\(\Leftrightarrow x+y=40\)(3)
Diện tích ban đầu của mảnh đất là:
\(xy\left(m^2\right)\)
Vì khi tăng chiều dài thêm 3m và tăng chiều rộng thêm 5m thì diện tích tăng thêm 195m2 nên ta có phương trình:
\(\left(x+3\right)\left(y+5\right)=xy+195\)
\(\Leftrightarrow xy+5x+3y+15-xy-195=0\)
\(\Leftrightarrow5x+3y-180=0\)
\(\Leftrightarrow5x+3y=180\)(4)
Từ (3) và (4) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=40\\5x+3y=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+5y=200\\5x+3y=180\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=20\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40-y=40-10=30\\y=10\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài của mảnh đất là 30m
Chiều rộng của mảnh đất là 10m
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có hệ:
a-b=13 và (a-5)(b+3)=ab-30
=>a-b=13 và 3a-5b=-15
=>a=40 và b=27
Diện tích vườn là 40*27=1080m2
Gọi chiều dài của mảnh đất hcn là x(m),chiều rộng của mảnh đất hcn là y(m) (0<y<x).
Diện tích ban đầu của mảnh đất đó là : xy(m2).
Sau khi tăng chiều dài 2m và chiều rộng thêm 5m thì diện tích mới của mản đất đó là:(x+2)(y=5) (m2). (1)
Vì nếu tăng chiều dài 2m và chiều rộng thêm 5m thì diện tích tăng thêm 120m2,nên ta có pt:(x+2)(y=5) -xy=120.
Sau khi giảm chiều dài 3m và chiều rộng đi 2m thì diện tích của mảnh đất đó là: (x-3)(y-2) (m2).
Vì Nếu giảm chiều dài 3m và chiều rộng đi 2m thì diện tích giảm 60m2,nên ta có pt : xy-(x-3)(y-2)=60. (2)
- Còn lại hệ pt tự giải nốt nhé
gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)
diện tích thửa ruộng là x.y (m2)
nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy
nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy
từ đó ta tìm được diện tích là 308m2
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\left(a+b\right)=120\\\left(b+5+\dfrac{3}{4}a\right)=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=60\\\dfrac{3}{4}a+b=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{4}a=5\\a+b=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=40\end{matrix}\right.\)
Diện tích ban đầu la 20x40=800(m2)
Gọi cd ban đầu là a(m;a>0)
Cr đầu: \(a-5\left(m\right)\)
Cd sau: \(a-5\left(m\right)\)
Cr sau: \(a-5-4=a-9\left(m\right)\)
Theo đề ta có \(S_{đầu}-S_{sau}=a\left(a-5\right)-\left(a-5\right)\left(a-9\right)=180\)
\(\Leftrightarrow\left(a-5\right)\left(a-a+9\right)=180\\ \Leftrightarrow9\left(a-5\right)=180\\ \Leftrightarrow a-5=20\\ \Leftrightarrow a=25\)
Vậy chu vi ban đầu là \(\left[a+\left(a-5\right)\right]\cdot2=90\left(m\right)\)
Gọi chiều dài và chiều rộng ll là `a,b(m)(a>b>0)`
Theo bài:`a-b=5(1)`
Nếu giảm chiều rộng đi 4m và giảm chiều dài đi 5m thì diện tích mảnh đất giảm đi 180 m2
`=>(a-5)(b-4)+180=ab`
`<=>ab-5b-4a+20+180=ab`
`<=>5b+4a=200(2)`
(1)(2)=>HPt:
$\begin{cases}a-b=5\\4a+5b=200\\\end{cases}$
`<=>` $\begin{cases}4a-4b=20\\4a+5b=200\\\end{cases}$
`<=>` $\begin{cases}9b=180\\a=b+5\\\end{cases}$
`<=>` $\begin{cases}b=20\\a=25\\\end{cases}$
Vậy chiều dài là 25,chiều rộng là 20m