Bài 6. Cho tam giác ABC v...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi O là trung điểm của MC

=>O là tâm đường tròn đường kính MC

Xét (O) có

ΔCNM nội tiếp

CM là đường kính

Do đó: ΔCNM vuông tại N

=>MN\(\perp\)NC tại N

=>MN\(\perp\)CB tại N

Xét tứ giác ABNM có \(\widehat{MNB}+\widehat{MAB}=90^0+90^0=180^0\)

nên ABNM là tứ giác nội tiếp

=>A,B,N,M cùng thuộc một đường tròn

b: ABNM là tứ giác nội tiếp

=>\(\widehat{ANM}=\widehat{ABM}\)

=>\(\widehat{ANM}=\widehat{ABI}\)(1)

Xét tứ giác CIAB có \(\widehat{CIB}=\widehat{CAB}=90^0\)

nên CIAB là tứ giác nội tiếp

=>\(\widehat{ABI}=\widehat{ACI}\)

mà \(\widehat{ACI}=\widehat{MCI}=\widehat{MNI}\left(=\dfrac{1}{2}sđ\stackrel\frown{MI}\right)\)

nên \(\widehat{ABI}=\widehat{MNI}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MNI}=\widehat{MNA}\)

=>NM là phân giác của góc ANI

30 tháng 5 2021

https://thi.tuyensinh247.com/de-thi-thu-vao-lop-10-mon-toan-lan-3-phong-gddt-gia-loc-2016-c31a28113.html

25 tháng 10 2021

mình chịu

6 tháng 3 2022

Xét (O) có 

^ABC = 900 ( góc nr chắn nửa đường tròn ) 

=> ^ABD' = 900

=> AD' là đường kính của đường tròn (O') ; B là điểm thuộc đường tròn 

=> A;O';D thẳng hàng 

30 tháng 6 2021

Gọi I là trung điểm của BC => BI=IC=1/2 BC (1)

Vì tam giác FBC vuông tại F; FI là đường trung trực của BC =>FI = 1/2 BC (2)

Tương tự => EI = 1/2 BC (3)

Từ (1), (2) và (3) =>EI = BI = IC = FI = 1/2 BC

=>E, B, C, F thuộc một đường tròn

B C O D M A I

Bài làm

a) Ta có: A thuộc nửa đường tròn tâm O đường kính BC

=> Tam giác ABC vuông tại A

=> \(\widehat{BAC}=90^0\Rightarrow\widehat{ADC}=90^0\)

Lại có: M thuộc nửa đường tròn tâm O đường kính BC

=> Tam giác MBC vuông tại A

=> \(\widehat{BMC}=90^0\Rightarrow\widehat{BMD}=90^0\)

Xét tứ giác AIMD có:

\(\widehat{ADC}=\widehat{DMB}=90^0\)

=> Tứ giác AIMD là tứ giác nội tiếp đường tròn. (đpcm).

b) Xét tam giác BAI và tam giác CMI có:

\(\widehat{BAC}=\widehat{CMB}=90^0\)

\(\widehat{AIB}=\widehat{MIC}\)(đối)

=> Tam giác BAI đồng dạng với tam giác CMI (g-g)

=> \(\frac{AI}{IM}=\frac{BI}{IC}\Rightarrow AI.IC=BI.IM\left(\text{đ}pcm\right)\)

~ Không hiểu gì inbox hỏi mình ~