Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét ΔABC có
BI là đường phân giác ứng với cạnh AC
nên \(\dfrac{AI}{IC}=\dfrac{AB}{BC}\)
hay \(\dfrac{AI}{IC}=\dfrac{AC}{BC}\left(1\right)\)
Xét ΔACB có
CJ là đường phân giác ứng với cạnh AB
nên \(\dfrac{AJ}{JB}=\dfrac{AC}{BC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AJ}{JB}=\dfrac{AI}{IC}\)
hay IJ//BC
Xét tứ giác BIJC có IJ//BC
nên BIJC là hình thang
mà \(\widehat{JBC}=\widehat{ICB}\)
nên BIJC là hình thang cân
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
![](https://rs.olm.vn/images/avt/0.png?1311)
\(7,\)
\(a,\left\{{}\begin{matrix}AB=AC\left(\Delta ABC.cân\right)\\\widehat{B_1}=\widehat{C_1}\left(\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\right)\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AFC=\Delta AEB\left(g.c.g\right)\\ \Rightarrow AF=AE\Rightarrow\Delta AFE.cân.tại.A\)
\(b,\left\{{}\begin{matrix}\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\\BC.chung\\\widehat{B_2}=\widehat{C_2}\left(\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\right)\end{matrix}\right.\Rightarrow\Delta BFC=\Delta CEB\left(g.c.g\right)\)
\(c,\widehat{F_1}=\dfrac{180^0-\widehat{BAC}}{2}\left(\Delta AEF.cân\right);\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\left(\Delta ABC.cân\right)\\ \Rightarrow\widehat{F_1}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị nên \(EF//BC\Rightarrow BEFC\) là hình thang
Mà \(\widehat{ABC}=\widehat{ACB}\left(GT\right)\)
Vậy \(BEFC\) là hình thang cân
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
\(\left\{{}\begin{matrix}\widehat{ABI}=\widehat{IBC}=\dfrac{1}{2}\widehat{ABC}\\\widehat{ACJ}=\widehat{JCB}=\dfrac{1}{2}\widehat{ACB}\end{matrix}\right.\)
Mà \(\widehat{ABC}=\widehat{ACB}\) nên \(\widehat{ABI}=\widehat{IBC}=\widehat{ACJ}=\widehat{JCB}\)
\(\left\{{}\begin{matrix}\widehat{ABI}=\widehat{ACJ}\\AB=AC\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta ABI=\Delta ACJ\left(g.c.g\right)\\ \Rightarrow AI=AJ\\ \Rightarrow\Delta AIJ.cân.tại.A\Rightarrow\widehat{AJI}=\dfrac{180^0-\widehat{A}}{2}\left(1\right)\\ \Delta ABC.cân.tại.A\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{AJI}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị nên \(BC//IJ\Rightarrow BCIJ\) là hthang
Mà \(\widehat{ABC}=\widehat{ACB}\) nên \(BCIJ\) là hthang cân
Xét ΔABI và ΔACJ có
\(\widehat{ABI}=\widehat{ACJ}\)
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABI=ΔACJ
Suy ra: AI=AJ
Xét ΔABC có
\(\dfrac{AJ}{AB}=\dfrac{AI}{AC}\)
Do đó: JI//BC
Xét tứ giác BJIC có JI//BC
nên BJIC là hình thang
mà BI=JC
nên BJIC là hình thang cân