Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ:
A C B E K D
a/ Xét 2Δ vuông:ΔACE và ΔAKE có:
AE: chung
\(\widehat{CAE}=\widehat{KAE}\left(gt\right)\)
=> ΔACE = ΔAKE (ch-gn)
=> AC = AK (đpcm)
b/ Ta có: \(\widehat{CAE}=\widehat{KAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^o}{2}=30^o\left(gt\right)\)
mà \(\widehat{B}=30^o\left(180^o-\widehat{C}-\widehat{CAB}\right)\)
=> \(\widehat{KAE}=\widehat{B}=30^o\)
=> \(\Delta EAB\) cân tại E
mà EK _l_ AB (gt)
=> EK cũng là đường trung tuyến của AB(t/c các đường troq Δ cân)
=> KA = KB (đpcm)
c/ Xét \(\Delta EAB\) có:
EK _l_ AB (gt) ; BD _l_ AE kéo dài (gt)
AC _l_ BE ké dài (gt)
=> EK, BD, AC đồng quy tại 1 điểm (đpcm)
đáp án ở đây bạn nha trừ câu c):
https://hoc24.vn/hoi-dap/question/59956.html
a, theo pytago ta có:
AB2+AC2=BC2 <=> AC=\(\sqrt{10^2-6^2}\)=8 (cm)
so sánh: BAC>ABC>ACB vì BC>AC>AB
b, vì A là trung điểm BD nên CA là trung tuyến của tam giác DBC
mà CA\(\perp\)BD nên CA là đường cao của tam giác DBC
=> CA vừa là trung tuyến vừa là đường cao của tam giác DBC nên DBC cân ở C
a) Ta có: OC=OA+AC
OD=OB+BD
Mà OA=OB và AC=BD (gt)
=>OC=OD
Xét Δ OAD và Δ OBC có:
OA=OB (gt)
ˆOO^ góc chung
OC=OD (cmt)
=> Δ OAD=Δ OBC (c.g.c)
=> AD=BC (2 cạnh tương ứng)
Δ OAD=Δ OBC (cmt)
=> ˆD=ˆCD^=C^ và ˆA1=ˆB1A1^=B1^ (2 góc tương ứng)
Mà ˆA1+ˆA2=ˆB1+ˆB2A1^+A2^=B1^+B2^= 1800 (kề bù)
=> ˆA2=ˆB2A2^=B2^
Δ EAC và Δ EBD có:
ˆC=ˆDC^=D^ (cmt)
AC=BD (gt)
ˆA2=ˆB2A2^=B2^ (cmt)
=> Δ EAC= ΔEBD (g.c.g)
c) Δ EAC=ΔEBD (cmt)
=> EA=EB (2 cạnh tương ứng)
ΔOBE và Δ OAE có:
OB=OA (gt)
ˆB1=ˆA1B1^=A1^ (cmt)
EA=EB (cmt)
=>Δ OBE=Δ OAE (c.g.c)
=> ˆO1=ˆO2O1^=O2^ (2 góc tương ứng)
Vậy OE là phân giác ˆxO
a) Có : AB=AC(tg ABC cân tại A)
BD=CE(gt)
=> AB+BD=AC+CE
=> AD=AE
=> Tg ADE cân tại A
\(\Rightarrow\widehat{D}=\widehat{E}=\frac{180^o-\widehat{A}}{2}\)
Lại có : \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\)(tg ABC cân tại A)
\(\Rightarrow\widehat{D}=\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\)
Mà chúng là 2 góc đồng vị
=> BC//DE
b) Có : \(\widehat{CBD}=180^o-\widehat{ABC}\)
\(\widehat{BCE}=180^o-\widehat{ACB}\)
Mà : \(\widehat{ABC}=\widehat{ACB}\)(tg ABC cân tại A)
\(\Rightarrow\widehat{CBD}=\widehat{BCE}\)
- Xét tg BCD và CBE có :
BD=CE(gt)
BC-cạnh chung
\(\widehat{CBD}=\widehat{BCE}\left(cmt\right)\)
=> Tg BCD=CBE(c.g.c)
=> BE=CD(đccm)
c) Có : \(\widehat{KBC}=\widehat{KCB}\)(tg BCD=CBE)
=> Tg KBC cân tại K
- Có : \(\widehat{KDE}=\widehat{ADE}-\widehat{ADC}\)
\(\widehat{KED}=\widehat{AED}-\widehat{AEB}\)
Mà : \(\widehat{AED}=\widehat{ADE}\)(tg ADE cân tại A)
\(\widehat{ADC}=\widehat{AEB}\)(tg BCD=CBE)
\(\Rightarrow\widehat{KED}=\widehat{KDE}\)
=> Tg KDE cân tại K
d) Xét tam giác ABK và ACK có :
AB=AC(tg ABC cân tại A)
AK-cạnh chung
KB=KC(tg KBC cân tại K)
=> Tg ABK=ACK(c.c.c)
=> \(\widehat{BAK}=\widehat{CAK}\)
=> AK là tia pg góc BAC
e) Không thấy rõ đề : DM và EN như thế nào so với BC?
mn ơi giúp mình với mai nộp òi