Bài 6: Cho tam giác ABC cân tại A. Trên tia đối của tia...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đói của tia CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc AD, CK vuồn góc AE(H thuộc AD; K thuộc AE). 2 đường thẳng HB và KC cắt nhau tại O. CMR:a)tam giác ADE cân b)tam giác BOC cân c)OA là tia phân giác của góc BOC2.Cho điểm M nằm giữa 2 điểm A và B. Trên cùng 1 nửa mặt phẳng bờ AB vẽ các tam giác đều AMC và BMD. Gọi E và F theo...
Đọc tiếp

1. Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đói của tia CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc AD, CK vuồn góc AE(H thuộc AD; K thuộc AE). 2 đường thẳng HB và KC cắt nhau tại O. CMR:

a)tam giác ADE cân

b)tam giác BOC cân

c)OA là tia phân giác của góc BOC

2.Cho điểm M nằm giữa 2 điểm A và B. Trên cùng 1 nửa mặt phẳng bờ AB vẽ các tam giác đều AMC và BMD. Gọi E và F theo thứ tự là trung điểm của AD và BC. CMR:

a) tam giác AMD=tam giác CMB

 b) tam giác MEF đều

3.Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM+AN=2AB.

a) CMR BM=CN

b) Đường trung trực của MN và tia phân giác của BAC cắt nhau tại K. CM: tam giác BKM= tam giác CKN. Từ đó suy ra K thuộc AN

0

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

b: 

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>góc HBD=góc KCE

=>góc IBC=góc ICB

=>ΔIBC cân tại I

c: Xét ΔABI và ΔACI có

AI chung

AB=AC

BI=CI

=>ΔABI=ΔACI

=>góc BIA=góc CIA

=>IA là phân giác của góc BIC

19 tháng 5 2017

A B C D K E H

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^o\) (kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^o\)(kề bù)

\(\widehat{ABC}=\widehat{ACB}\) (do \(\Delta ABC\) cân tại A)

Do đó: \(\widehat{ABD}=\widehat{ACE}\)

Xét hai tam giác ABD và ACE có:

\(\widehat{BAD}=\widehat{CAE}\) (gt)

AB = AC (do \(\Delta ABC\) cân tại A)

\(\widehat{ABD}=\widehat{ACE}\) (cmt)

Vậy: \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)

Suy ra: BD = CE (hai cạnh tương ứng)

b) Xét hai tam giác BHD và CKE có:

BD = CE (cmt)

\(\widehat{ADB}=\widehat{AEC}\) (\(\Delta ABD=\Delta ACE\))

Vậy: \(\Delta BHD=\Delta CKE\left(ch-gn\right)\)

Suy ra: BH = CK (hai cạnh tương ứng).

23 tháng 11 2018

Hình tự vẽ nha 

a) Vì tam giác ABC cân tại A

=> ABC = ACB (1)

Ta có ABC + ABD = ACB + ACE ( cùng = 1800 ) (2)

Từ (1) và (2) => ABD = ACE

Xét tam giác ABD và tam giác ACE có :

AB = AC ( gt )

ABD = ACE ( cmt )

BD = CE ( gt )

=> tam giác ABD = tam giác ACE ( c-g-c )

=> D = E

Xét tam giác BHD và tam giác CKE có :

DHB = EKC ( = 900 )

BD = CE ( gt )

D = E ( cmt )

=> tam giác BHD = tam giác CKE ( ch - gn )

=> đpcm

b) Vì tam giác ABD = tam giác ACE ( chứng minh câu a )

=> HAB = KAC ( 2 góc tương ứng )

Xét tam giác AHB và tam giác AKC có :

HAB = KAC ( cmt )

AHB = AKC ( = 900 )

AB = AC ( gt )

=> tam giác AHB = tam giác AKC ( ch - gn )

=> đpcm

c) Nối H với K

Xét tam giác ADE cân tại A ( vì AD = AE )

=> \(\widehat{D}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)

Xét tam giác AHK cân tại A ( vì AH = AK )

\(\Rightarrow\widehat{AHK}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)

Từ (1) và (2) => D = AHK

mà 1 góc này ở vị trí đồng vị

=> HK // DE hay HK // BC ( đpcm ) 

Có j lên đây hỏi nha : Group Toán Học