K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2022

a) Vì \(AB=AC\) (giả thiết)

\(\Rightarrow\Delta ABC\) cân tại A

Mà \(AM\) là đường trung tuyến (giả thiết)

\(\Rightarrow AM\) cũng là đường phân giác \(\widehat{A}\) 

b) Vì \(\Delta ABC\) cân tại A (cmt)

Mà \(AM\) là đường phân giác (cmt)

\(\Rightarrow AM\) là đường trung trực \(BC\)

\(\Rightarrow AM\perp BC\)

c) Xét \(\Delta AMC\left(\widehat{M}=90^o\right)\) có:

\(AC^2=AM^2+MC^2\) (định lí pitago)

\(\Rightarrow AM=\sqrt{AC^2-MC^2}=\sqrt{5^2-\left(\dfrac{6}{2}\right)^2}=4\left(cm\right)\)

d) Xét \(\Delta AME\left(\widehat{E}=90^o\right)\) và \(\Delta AMF\left(\widehat{F}=90^o\right)\) có:

\(\widehat{EAM}=\widehat{FAM}\) (do \(AM\) là tia phân giác \(\widehat{EAF}\))

\(AM\) là cạnh chung

\(\Rightarrow\Delta AME=\Delta AMF\left(ch.gn\right)\)

\(\Rightarrow ME=MF\) (\(2\) cạnh tương ứng)

\(\Rightarrow\Delta MEF\) cân tại \(M\)

2 tháng 2 2022

a, Xét tam giác ABC có : AB = AC 

Vậy tam giác ABC cân tại A

Lại có M là trung điểm BC hay AM là trung tuyến 

=> AM đồng thời là đường phân giác ^A

b, Xét tam giác ABC cân tại A

AM là đường trung tuyến đồng thời là đường cao 

hay AM vuông BC 

c, Vì M là trung tuyến BC => BM = BC/2 = 6/2 = 3 cm 

Theo định lí Pytago tam giác ABM vuông tại M

\(AM=\sqrt{AB^2-BM^2}=4cm\)

d, Xét tan giác AFM và tam giác AEM có : 

^AFM = ^AEM = 900

AM _ chung 

^FAM = ^EAM ( AM là phân giác )

Vậy tam giác AFM = tam giác AEM ( ch - gn ) 

=> FM = EM ( 2 cạnh tương ứng )

Xét tam giác MEF có FM = EM 

Vậy tam giác MEF cân tại M 

21 tháng 2 2022

a, Xét tam giác DEB và tam giác DFC ta có 

BD = DC (gt) 

^B = ^C (gt) 

Vậy tam giác DEB = tam giác DFC (ch-gn) 

=> DE = DF ( 2 cạnh tương ứng )

b, Xét tam giác AED và tam giác AFD có 

AD _ chung 

DE = DF (cmt)

Vậy tam giác AED = tam giác AFD (ch-cgv) 

=> ^EAD = ^FAD ( góc tương ứng ) 

b, Xét tam giác ABC có 

^EAD = ^FAD (cmt) hay AD là phân giác ^A 

Bạn ới, sao câu b nó sao sao ấy, chỗ "Xét tam giác ABC" ấy, mik thấy hơi hơi kì phải hong bạn hay bài làm đúm rùi?🤔🤔🤧🤧

 

3 tháng 5 2016

D E F

a/ Vì EF2=DE2+DF2 (Pytago)

=> Tam giác DEF vuông tại D

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0