Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( Hình tự vẽ nha bạn )
giải
Ta có: ∠(ADC) = ∠(BCD) (gt)
⇒ ∠(ODC) = ∠(OCD)
⇒ΔOCD cân tại O (dhnb tam giác cân)
⇒ OC = OD
OB + BC = OA + AD
Mà AD = BC (tính chất hình thang cân)
⇒ OA = OB
Xét ΔADC và. ΔBCD:
AD = BC (hình thang ABCD cân )
AC = BD (hình thang ABCD cân)
CD chung
Do đó ΔADC và ΔBCD (c.c.c)
⇒ ∠ADC= ∠BCD (2 góc tương ứng)
⇒ΔEDC cân tại E (dhnb tam giác cân)
⇒ EC = ED nên E thuộc đường trung trực CD
OC = OD nên O thuộc đường trung trực CD
E ≠ O. Vậy OE là đường trung trực của CD.
Ta có: BD= AC (tính chất hình thang cân)
⇒ EB + ED = EA + EC mà ED = EC
⇒ EB = EA nên E thuộc đường trung trực AB
OA = OB (chứng minh trên ) nên O thuộc đường trung trực của AB
E ≠ O. Vậy OE là đường trung trực của AB.
a) Xét ΔACD va ΔDBA có:
AB=DC(gt)
^ADC=^DAB(gt)
AB: cạnh chung
=> ΔACD=ΔDBA(c.g.c)
=>^ACD=^DBA ; ^DAC=^ADB
Có: ^BAD=^BAO+^OAD
^CDA=^CDO+^ODA
Mà ^BAD=^CDA(cmt) ; OAD=^ODA
=> ^BAO=^CDO
b) Xét ΔAOB và ΔDOC có:
^BAO=^CDO(cmt)
AB=DC
^ABO=^DCO(cmt)
=> ΔAOB=ΔDOC(g.c.g)
=> OB=OC ; OA=OD
Câu a) bạn có thể giải theo 2 trường hợp đó là: c.c.c và c.g.c bài này mk giải trường hợp hợp c.c.c nha
a)Xét \(\Delta ACD\) và \(\Delta DBA\)
có: + AC=BD( ABCD là hình thang cân)
+BC=AD(ABCD là hình thang cân)
+ AB:cạnh chung
Vậy \(\Delta ACD=\Delta DBA\left(c.c.c\right)\)
=> \(D_1=C_1\) ( 2 góc tương ứng) (1)
Mà \(\widehat{D}=\widehat{C}\left(gt\right)\) (2)
từ (1) và (2) =>\(\widehat{D_2}=\widehat{C_2}\)
=>\(\Delta EDC\) cân tại E
=> OD=OC (1)
Mặt khác: BD=AC(gt) (2)
Từ (1) và (2) :
=>OA=OB.
Trả lời
Xét tam giác OAD ta có: OE=AE; OE=FD \(\Rightarrow\)EF là ĐTB của tam giác OAD
\(\Rightarrow EF=\frac{1}{2}AD=\frac{1}{2}BC\left(1\right)\)và EF//AD
Ta có tam giác ABCD là tâm giác cân \(\Rightarrow\widehat{OCD}\)\(=\widehat{ODC}\)=\(60^0\)(tự lập luận)
Ta có: Tam giác ODC đều có CF là đường trung tuyến đồng thời là đường cao
\(\Rightarrow CF\perp BD\)
Tam giác BFC vuông tại F có FG là đường trung tuyến
\(\Rightarrow FG=CG=BG=\frac{BC}{2}\)(Theo t/c đường trung tuyến trong \(\Delta\)vuông)(2)
Chứng minh tường tự: EG=\(\frac{BC}{2}\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow FG=EF=EG\Rightarrow\Delta EFG\)là tam giác đều
Xét ΔOAD có OE/OA=OF/OD
nên EF//AD và EF=AD/2=BC/2
Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
DO đó: ΔADC=ΔBCD
=>góc ODC=góc OCD=60 đọ
=>ΔODC đều
mà CF là trung tuyến
nên CF vuông góc với BD
ΔBFC vuông tại F
mà FG là trung tuyến
nên FG=BC/2
Xét ΔOAB có góc OBA=góc OAB và góc AOB=60 độ
nên ΔOAB đều
mà BE là trung tuyến
nên BE vuông góc với CE
ΔBEC vuông tại E
mà EG là trung tuyến
nên EG=BC/2
=>EG=EF=FG
=>ΔEFG đều
Xét ΔOAD có OE/OA=OF/OD
nên EF//AD và EF=AD/2=BC/2
Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
DO đó: ΔADC=ΔBCD
=>góc ODC=góc OCD=60 đọ
=>ΔODC đều
mà CF là trung tuyến
nên CF vuông góc với BD
ΔBFC vuông tại F
mà FG là trung tuyến
nên FG=BC/2
Xét ΔOAB có góc OBA=góc OAB và góc AOB=60 độ
nên ΔOAB đều
mà BE là trung tuyến
nên BE vuông góc với CE
ΔBEC vuông tại E
mà EG là trung tuyến
nên EG=BC/2
=>EG=EF=FG
=>ΔEFG đều
Xét ΔACD và ΔBDC có
AC=BD
AD+BC
DC chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{OCD}=\widehat{ODC}\)
Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)
nên ΔODC cân tại O
Suy ra: OC=OD
Ta có: OA+OC=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB
a,Xét tam giác ABC và DAC có
AB chung
góc BAD=góc ABC(ABCD hình thang cân)
=>tam giác ABC=tam giác BAD
=>góc BAC=ABD
Tam giác AOB có góc OAB=góc OBA
=> tam giác OAB cân tại O=>OA=OB
b,Ta có:góc ADB= góc BCD(vì tam giác ABC=tam giác BAD)
Mà góc ADC=BCD
=>\(\widehat{ADC}\)-\(\widehat{BCD}\)=\(\widehat{BCD}\)-\(\widehat{ACB}\)
=>góc ODC= góc OCD
=> tam giác DOC cân tại O
=>OB=OC
-----------------------học tốt bạn ko cần tk đúng đâu------------------------