K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: 1/2(góc A+góc B+góc C)=90 độ

góc ABK=1/2*góc ABx

=>góc ABK=1/2(góc A+góc C)

góc IBA=1/2*góc B

=>góc ABK+góc IBA=90 độ

=>BI vuông góc BK

b: góc BAK=180-120=60 độ

=>góc BAK=góc CAD=góc DAB=60 dộ

Kẻ tia Ay là tia đối của tia AD

=>góc yAK=góc CAD=60 độ

Xét ΔADB có

AK là tia phân giác góc ngoài của góc yAB

BK là phân giác ngoài của góc ABx

=>DK là phân giác của góc BDA

13 tháng 4 2022

bài này dễ nhưng tạm thời chưa có thời gian để làm . Thông cảm

18 tháng 4 2022

:v

 

15 tháng 1 2016

: a/ góc ABD=góc ABF=gòc By=60 độ. Xét tam giác ABD có 2 tia phân giác ngoài tại đỉnh A,B cắt nhau tại F , Suy ra DF là tia F B phân giác ABD. Vậy góc ADF=góc BDF b/ Xét tam giác DBC có tia phân giác góc C và tia phân giác ngoài tại điỉnh B,cắt nhau tại E. Suy ra DE là tia phân giác ngoài của ADˆB . A D C Tia DE và DF đều là tia phân giác của góc ADB . => Nên 3 điểm D,E,F thẳng hàng.

 

31 tháng 1 2022

undefined

a) Xét   \(\Delta ABC\) có tia phân giác \(BAC,ACB\)  cắt nhau tại O suy ra O là giao điểm của 3 đường phân giác trong tam giác ABC suy ra BO là phân giác của \(\widehat{CBA}\)   (tính chất 3 đường phân giác của tam giác)

\(\Rightarrow DBO=ABO=\dfrac{DBA}{2}\left(1\right)\) ( tính chất tia phân giác )

Lại có BF là phân giác của \(\widehat{ABx\left(gt\right)}\) \(=ABF=FBx\left(2\right)\)

( tính chất của tia phân giác ) 

Mà \(ABD+ABx=180^o\left(3\right)\left(kềbu\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow OBA+ABF=180^o\div2=90^o\Rightarrow BO\text{⊥ }BF\)

b) Ta có \(FAB+BAC=180^o\)( kề bù ) mà \(BAC=120^o\left(gt\right)\Rightarrow FAB=60^o\)

\(\Rightarrow\text{AD là phân giác của}\widehat{BAC}\)  ( dấu hiệu nhận biết tia phân  giác )

\(\Rightarrow BAD=CAD=60^o\) ( tính chất tia phân giác )

\(\Rightarrow FAy=CAD=60^o\) ( đối đỉnh ) \(\Rightarrow FAB=FAy=60^o\Rightarrow\) AF là tia phân giác của \(BAy\) ( dấu hiệu nhận biết tia phân giác )

Vậy \(\Delta ABD\) có hai tia phân giác của hai góc ngoài tại đỉnh A và đỉnh B cắt nhau tại F nên suy ra DF là phân giác của \(ADB=BDF=ADF\) ( tính chất tia phân giác )

c) Xét \(\Delta ACD\) có phân giác góc ngoài tại đỉnh A và phân giác trong tại đỉnh C cắt nhau tại E nên suy ra DE cũng là phân giác của \(ADB\Rightarrow\)\(D,E,F\) thẳng hàng 

 

 

 

31 tháng 1 2022

thật là ngược mộ nha

dù không biết đúng hay sai nhưng lâu lắm mới thấy người làm nguyên một bài toán hình thế này mà còn có hình nữayeu