\(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}+3=0\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

\(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}+3=0\)

\(\Leftrightarrow\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1=0\)

\(\Leftrightarrow\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}=0\)

\(\Leftrightarrow\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0\), luôn đúng

=> đpcm

14 tháng 11 2016

b)áp dụng Bđt cô si

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2\)

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)\(\Rightarrow-3\left(\frac{x}{y}+\frac{y}{x}\right)\ge-6\)

\(\Rightarrow P\ge2+\left(-5\right)+5=1\)

Dấu = khi x=y

14 tháng 11 2016

a)Áp dụng Bđt Cô si ta có:

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)

Dấu = khi \(x=y\)

 

 

 

10 tháng 12 2016

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{x}{1+y+xz}=\frac{x\left(x^2+y+\frac{z}{x}\right)}{\left(1+y+xz\right)\left(x^2+y+\frac{z}{x}\right)}\le\frac{x^3+xy+z}{\left(x+y+z\right)^2}\)

\(\le\frac{x+y+z}{\left(x+y+z\right)}=\frac{1}{x+y+z}\)

Tương tự ta cũng có: \(\frac{y}{1+z+xy}\le\frac{1}{x+y+z};\frac{z}{1+x+yz}\le\frac{1}{x+y+z}\)

Cộng theo vế ta có: \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{1+1+1}{x+y+z}=\frac{3}{x+y+z}\)

 

11 tháng 12 2016

ff

26 tháng 11 2016

Giải phương trình nghiệm nguyên $3^x-y^3=1$ - Phương trình, hệ phương trình và bất phương trình - Diễn đàn Toán học

26 tháng 11 2016
  • Nếu x<0 suy ra y không nguyên
  • Nếu x=0 =>y=0
  • Nếu x=1 =>y không nguyên
  • Nếu x=2 =>y=2
  • Nếu x>2 \(pt\Rightarrow3^x=y^3+1\), vì x>2 =>y3>9

Ta suy ra \(y^3+1⋮9\Rightarrow y^3⋮9\) dư -1

\(\Rightarrow y=9k+2\) hoặc \(y=9k+5\) hoặc \(y=9k+8\) (k nguyên dương) (1)

Mặt khác ta cũng có \(y^3+1⋮3\) nên

\(y=3m+2\) (m nguyên dương ) (2)

Từ (1) và (2) suy ra vô nghiệm (vì từ (2) \(\Rightarrow y=9n+6\) ko thỏa (1))

Vậy pt có 2 cặp nghiệm nguyên ko âm là (0;0) và (2;2)

22 tháng 5 2017

1) \(9x^2+y^2-2z^2-18x+4z-6y+20=0\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)

\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y-3\right)^2+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

mà: \(9\left(x-1\right)^2\ge0;\left(y-3\right)^2\ge0;2\left(z+1\right)^2\ge0\)

nên \(_{\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}}\)

2) Ta có: \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Leftrightarrow\left(\frac{ayz+bxz+cxy}{xyz}\right)=0\Leftrightarrow ayz+bxz+cxy=0\)

Lại có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Rightarrow\left(\frac{x^2}{a^2}\right)+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)

mà : \(\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=\frac{2xyabc^2+2yzbca^2+2xzacb^2}{a^2b^2c^2}=\frac{2abc\left(cxy+ayz+bxz\right)}{a^2b^2c^2}=\frac{2abc\cdot0}{a^2b^2c^2}=0\)

Vậy \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

22 tháng 5 2017

1 ) \(9x^2+y^2+2z^2-18x+4z-6y+20=0\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

Vì \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\\\left(y-3\right)^2\ge0\\2\left(z+1\right)^2\ge0\end{cases}}\)

\(\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0\)

Để \(9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\) thì \(\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}}\)

2 ) Ta có : \(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{2xy}{ab}+\frac{y^2}{b^2}+\frac{2xz}{ac}+\frac{z^2}{c^2}+\frac{2yz}{bc}=1\)

\(\Leftrightarrow\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\left(\frac{2xy}{ab}+\frac{2xz}{ac}+\frac{2yz}{bc}\right)=1\)

\(\Leftrightarrow\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\frac{2xyz}{abc}\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)=1\)

\(\Leftrightarrow\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\frac{2xyz}{abc}.0=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\) (đpcm(

14 tháng 1 2017

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{\left(a+b+c\right)c}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)=0\)

\(\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)\ne0\)với mọi a,b,c

\(\Rightarrow\)a+b=0\(\Leftrightarrow\)a=-b là hai số đối nhau (1)

từ đó được \(a^n=-b^n\)với mọi n lẻ.

Khi đó \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\Leftrightarrow\frac{1}{c^n}=\frac{1}{c^n}\)luôn đúng (2)

Từ (1)và(2) ta được đpcm

14 tháng 11 2016

sao bn toàn cây khó thế?

 

15 tháng 11 2016

làm đề tỉnh mà .Sắp thi rồi nên

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 1:
Vì $x+y+z=1$ nên:

\(Q=\frac{x}{x+\sqrt{x(x+y+z)+yz}}+\frac{y}{y+\sqrt{y(x+y+z)+xz}}+\frac{z}{z+\sqrt{z(x+y+z)+xy}}\)

\(Q=\frac{x}{x+\sqrt{(x+y)(x+z)}}+\frac{y}{y+\sqrt{(y+z)(y+x)}}+\frac{z}{z+\sqrt{(z+x)(z+y)}}\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(x+y)(x+z)}=\sqrt{(x+y)(z+x)}\geq \sqrt{(\sqrt{xz}+\sqrt{xy})^2}=\sqrt{xz}+\sqrt{xy}\)

\(\Rightarrow \frac{x}{x+\sqrt{(x+y)(x+z)}}\leq \frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

\(Q\leq \frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Vậy $Q$ max bằng $1$

Dấu bằng xảy ra khi $x=y=z=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 2:
Vì $x+y+z=1$ nên:

\(\text{VT}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)

\(\text{VT}=\frac{(x+y+z)^2-x^2}{(x+y)(x+z)}+\frac{(x+y+z)^2-y^2}{(y+z)(y+x)}+\frac{(x+y+z)^2-z^2}{(z+x)(z+y)}\)

\(\text{VT}=\frac{(y+z)[(x+y)+(x+z)]}{(x+y)(x+z)}+\frac{(x+z)[(y+z)+(y+x)]}{(y+z)(y+x)}+\frac{(x+y)[(z+x)+(z+y)]}{(z+x)(z+y)}\)

Áp dụng BĐT AM-GM:
\(\text{VT}\geq \frac{2(y+z)\sqrt{(x+y)(x+z)}}{(x+y)(x+z)}+\frac{2(x+z)\sqrt{(y+z)(y+x)}}{(y+z)(y+x)}+\frac{2(x+y)\sqrt{(z+x)(z+y)}}{(z+x)(z+y)}\)

\(\Leftrightarrow \text{VT}\geq 2\underbrace{\left(\frac{y+z}{\sqrt{(x+y)(x+z)}}+\frac{x+z}{\sqrt{(y+z)(y+x)}}+\frac{x+y}{\sqrt{(z+x)(z+y)}}\right)}_{M}\)

Tiếp tục AM-GM cho 3 số trong ngoặc lớn, suy ra \(M\geq 3\)

Do đó: \(\text{VT}\geq 2.3=6\) (đpcm)

Dấu bằng xảy ra khi $3x=3y=3z=1$