K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAKB vuông tại K và ΔAKC vuông tại K có

AB=AC

AK chung

=>ΔAKB=ΔAKC

b: Xet ΔCAD có

CK vừa là đường cao, vừa là trung tuyến

=>ΔCAD cân tại C

=>CA=CD
c: Xét ΔABC có

K là trung điểm của CB

KM//AC

=>M là trung điểm của AB

11 tháng 4 2020

không biết

10 tháng 2 2022

cứt

 

30 tháng 12 2021

Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.

a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)

Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)

30 tháng 12 2021

b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K

Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:

\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung

\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)

Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)

\(\Rightarrow AK\perp BI\)tại H

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD và...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả

19 tháng 3 2020

mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng 

10 tháng 7 2019

A B C K D H M N

a, xét tam giác AKB và tam giác DKC có : AK = KD (gt)

BK = CK do K là trung điểm của BC (gt)

góc AKB = góc DKC (đối đỉnh)

=> tam giác AKB = tam giác DKC (c-g-c)

=> góc CDK = góc KAB (đn) mà 2 góc này so le trong

=>  CD // AB (tc)

b,  tam giác ABC vuông tại A (gt) => góc BAC = 90 (đn)

CD // AB (Câu a) mà góc BAC trong cùng phía với góc ACD => góc BAC + góc ACD = 180 (đl)

=> góc ACD = 180 - 90 = 90 

=> góc ACD = góc BAC = 90

xét tam giác ABH và tam giác CDH có : AH = HC do H là trung điểm của AC (gt)

CD = AB do tam giác AKB = tam giác DKC (Câu a)

=> tam giác ABH = tam giác CDH (2cgv) 

c,  tam giác ABH = tam giác CDH (Câu b)

=> góc CDH = góc ABH (đn)

tam giác CDH vuông tại C => góc CHD + góc CDH = 90

tam giác ABH vuông tại A => góc ABH + góc AHB = 90

=> góc CHD = góc AHB (1)

xét tam giác ABC và tam giác CDA có : AC chung

góc BAC = góc DCA = 90 

AB = CD (câu b) 

=> tam giác ABC = tam giác CDA (2cgv)

=> góc ACB = góc CAD (đn)    (2)

tam giác HNC và tam giác HMA có : AH = HC (câu b)  và (1)(2)

=> tam giác HNC = tam giác HMA (g-c-g)

=> HN = HM (đn)

=> tam giác HNM cân tại H (đn)

28 tháng 11 2019

Bạn tham khảo tại đây nhé: 

https://h.vn/hoi-dap/question/75003.html

À, bạn Sooya vẽ hình đúng đó bạn xem đi chứ mình ko biết cách đăng hình 😛

Câu b của bài này có 2 cách, nhưng cách ở link trên đúng hơn, đây là cách 2 của mình làm, bạn chọn cách nào tùy bạn nhưng mình nghĩ bạn đừng nên chọn cách của mình:))

b) Ta có: CD//AB (câu a) => góc DBC = góc ACB (so le trong)

Suy ra: AC//BD (có hai góc ở vị trí so le trong)

Tứ giác ABDC có: CD//AB (câu a) và AC//BD (cmt)

=> AC=BD và CD=AB

Do đó: góc BDC = 90°

Xét hai tam giác vuông ABH và CDH có:

AB=CD (cmt)

AH=HC (H là trung điểm AC)

=> tam giác ABH = tam giác CDH (2cgv)

*ko biết mấy cái t/c mình làm trong bài bạn có học chưa nữa, nhưng mà mình làm chỉ để bạn tham khảo thôi nha, làm cách trong link kia í*

a: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có

CA chung

AB=AD

Do đó: ΔCAB=ΔCAD

=>CB=CD

=>ΔCBD cân tại C

b: Ta có: \(\widehat{EAC}=\widehat{DCA}\)(hai góc so le trong, AE//CD)

\(\widehat{ECA}=\widehat{DCA}\)(ΔDCA=ΔBCA)

Do đó: \(\widehat{EAC}=\widehat{ECA}\)

=>ΔEAC cân tại E

c: Ta có: \(\widehat{EAC}+\widehat{EAB}=\widehat{BAC}=90^0\)

\(\widehat{ECA}+\widehat{EBA}=90^0\)(ΔABC vuông tại A)

mà \(\widehat{EAC}=\widehat{ECA}\)

nên \(\widehat{EAB}=\widehat{EBA}\)

=>EA=EB

mà EA=EC(ΔEAC cân tại E)

nên EB=EC

=>E là trung điểm của BC