Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(A=1993^{1^{2\times3\times4\times...\times1994}}=1993^1=1993\)
b,\(B=1994^{\left(225-1^2\right)\times\left(225-2^2\right).....\left(225-50^2\right)}\)
\(=1994^{\left(225-1^2\right)\times\left(225-2^2\right)...\left(225-15^2\right)...\left(225-50^2\right)}\)
\(=1994^{\left(225-1^2\right)\times\left(225-2^2\right)...\left(225-225\right)...\left(225-50^2\right)}\)
\(=1994^{\left(225-1^2\right)\times\left(225-2^2\right)...\times0\times...\left(225-50^2\right)}\)
\(=1994^0=1\)
c, \(C=\frac{2^{10}\times3^{31}+2^{40}\times3^6}{2^{11}\times3^{31}+2^{41}\times3^6}\)
\(=\frac{2^{10}\times3^6\times\left(1\times3^{25}+2^{30}\times1\right)}{2^{11}\times3^6\times\left(1\times3^{25}+2^{30}\times1\right)}\)
\(=\frac{2^{10}}{2^{11}}=\frac{1}{2}\)
\(1\frac{13}{15}\cdot3\cdot(0,5)^2\cdot3+\left[\frac{8}{15}-1\frac{19}{60}:1\frac{23}{24}\right]\)
\(=\frac{28}{15}\cdot3\cdot0,5\cdot0,5\cdot3+\left[\frac{8}{15}-\frac{79}{60}:\frac{47}{24}\right]\)
\(=\frac{28}{5}\cdot0,25\cdot3+\left[\frac{32}{60}-\frac{79}{60}\cdot\frac{24}{47}\right]\)
\(=\frac{28}{5}\cdot\frac{25}{100}\cdot3+\left[\frac{32}{60}-\frac{158}{235}\right]\)
\(=\frac{28}{5}\cdot\frac{1}{4}\cdot3+\frac{-98}{705}=\frac{7}{5}\cdot1\cdot3+\frac{-98}{705}\)
Đến đây là tính dễ rồi :v
\((-3,2)\cdot\frac{-15}{64}+\left[0,8-2\frac{4}{15}\right]:1\frac{23}{24}\)
\(=\frac{-32}{10}\cdot\frac{-15}{64}+\left[\frac{8}{10}-\frac{34}{15}\right]:\frac{47}{24}\)
\(=\frac{-32\cdot(-15)}{10\cdot64}+\left[\frac{4}{5}-\frac{34}{15}\right]:\frac{47}{24}\)
\(=\frac{-1\cdot(-3)}{2\cdot2}+\frac{4\cdot3-34}{15}:\frac{47}{24}\)
\(=\frac{3}{4}+\frac{-22}{15}:\frac{47}{24}\)
\(=\frac{3}{4}+\frac{-517}{180}=\frac{-191}{90}\)
Bài 2 : \(\frac{2\cdot(-13)\cdot9\cdot10}{(-3)\cdot4\cdot(-5)\cdot26}=\frac{1\cdot(-1)\cdot3\cdot2}{(-1)\cdot2\cdot(-1)\cdot2}=\frac{1\cdot3}{-1\cdot2}=\frac{3}{-2}=\frac{-3}{2}\)
\(\frac{15\cdot8+15\cdot4}{12\cdot3}=\frac{15\cdot(8+4)}{12\cdot3}=\frac{15\cdot12}{12\cdot3}=\frac{15}{3}=5\)
A=\(\frac{5x\left(2^2x3^2\right)^9-2x\left(2^2x3\right)^{14}x3^4}{5x2^{28}x3^{18}-7x2^{29}x3^{18}}\)=\(\frac{5x2^{18}x3^{18}-2x2^{28}x3^{14}x3^4}{2^{28}x3^{18}x\left(5-7x2\right)}\)=\(\frac{5x2^{18}x3^{18}-2^{29}x3^{18}}{2^{28}x3^{18}x\left(-9\right)}\)=
= \(\frac{2^{18}x3^{18}\left(5-2^{11}\right)}{-9x2^{28}x3^{18}}=\frac{5-2^{11}}{-9x2^{10}}=\frac{2043}{9216}=\frac{227}{1024}\)
a, \(4\times\left(-\dfrac{1}{2}\right)^3-2\times\left(-\dfrac{1}{2}\right)^2+3\times\left(-\dfrac{1}{2}\right)+1\)
\(=\left(-\dfrac{1}{2}\right)\left[\left(4\times-\dfrac{1}{2}\right)-\left(2\times-\dfrac{1}{2}\right)+3\right]+1\)
\(=\left(-\dfrac{1}{2}\right)\left(-2+1+3\right)+1\)
\(=\left(-\dfrac{1}{2}\right)2+1\)
\(=-1+1\)
\(=0\)
@Trịnh Thị Thảo Nhi
a, 4×(−12)3−2×(−12)2+3×(−12)+14×(−12)3−2×(−12)2+3×(−12)+1
=(−12)[(4×−12)−(2×−12)+3]+1=(−12)[(4×−12)−(2×−12)+3]+1
=(−12)(−2+1+3)+1=(−12)(−2+1+3)+1
=(−12)2+1=(−12)2+1
=−1+1=−1+1
=0=0
Ta có : S = \(\frac{5.2^{30}.6^3.3^{15}-2^3.8^9.3^{17}.21}{21.2^{29}.3^{16}.4-2^{29}.\left(3^4\right)^5}=\frac{5.2^{30}.\left(2.3\right)^3.3^{15}-2^3.\left(2^3\right)^9.3^{17}.3.7}{3.7.2^{29}.3^{16}.2^2-2^{29}.3^{20}}=\frac{5.2^{33}.3^{18}-2^{30}.3^{18}.7}{3^{17}.7.2^{31}-2^{29}.3^{20}}\)
\(=\frac{2^{30}.3^{18}.\left(5.2^3-7\right)}{3^{17}.2^{29}.\left(7.2^2-3^3\right)}=2.3.33=198\)
Ta có : D = (1 + 2 + 22 + 23 + ....... + 22004) - 22005
Đặt A = 1 + 2 + 22 + 23 + ....... + 22004
=> 2A = 2 + 22 + 23 + ....... + 22005
=> 2A - A = 22005 - 1
=> A = 22005 - 1
Thay vào ta có : D = (1 + 2 + 22 + 23 + ....... + 22004) - 22005
=> D = 22005 - 1 - 22005
=> D = -1
cậu làm còn thiếu bước kìa Nguyễn Việt Hoàng