Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
a. 5 - 3(x + 4) = -1
⇔ 5 - 3x - 12 = -1
⇔ 3x = -1 - 5 + 12
⇔ 3x = 6
⇔ x = 2
\(d,2x^2-3=5\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x=\pm2\)
\(e,x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
1) 5.( x - 6 ) - 2.( x + 9 ) = 21
5x - 30 - 2x - 18 = 21
3x - 48 = 21
3x = 21 + 48
3x = 69
x = 23
2) 2.( x + 3 ) + 3.( x + 1 ) = 15 - ( - 9 )
2x + 6 + 3x + 3 = 24
5x + 9 = 24
5x = 24 - 9
5x = 15
x = 3
3) ( - x + 5 ).(3 - x ) = 0
=> - x + 5 = 0 hoặc 3 - x = 0
=> x = 5 hoặc x = 3
4) ( x - 12 ) - 15 = ( 20 - 7 ) - ( 18 + x )
x - 12 - 15 = 13 - 18 - x
x - 27 = - 5 - x
x + x = - 5 + 27
2x = 22
x = 11
5) x - ( 17 - 8 ) = 5 + ( 10 - 3x )
x - 9 = 5 + 10 - 3x
x + 3x = 15 + 9
4x = 24
x = 6
1) \(x.\left(x+7\right)=0\)
\(=>\left[\begin{matrix}x=0\\x+7=0\end{matrix}\right.=>\left[\begin{matrix}x=0\\x=-7\end{matrix}\right.\)
2) \(\left(x+12\right).\left(x-3\right)=0\)
\(=>\left[\begin{matrix}x+12=0\\x-3=0\end{matrix}\right.=>\left[\begin{matrix}x=-12\\x=3\end{matrix}\right.\)
3) \(\left(-x+5\right).\left(3-x\right)=0\)
\(=>\left[\begin{matrix}-x+5=0\\3-x=0\end{matrix}\right.=>\left[\begin{matrix}x=5\\x=3\end{matrix}\right.\)
4) \(x.\left(2+x\right).\left(7-x\right)=0\)
\(=>\left[\begin{matrix}x=0\\2+x=0\\7-x=0\end{matrix}\right.=>\left[\begin{matrix}x=0\\x=-2\\x=7\end{matrix}\right.\)
5) \(\left(x-1\right).\left(x+2\right).\left(-x-3\right)=0\)
\(=>\left[\begin{matrix}x-1=0\\x+2=0\\-x-3=0\end{matrix}\right.=>\left[\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)
a.
\(\left|x+10\right|=15\Rightarrow\orbr{\begin{cases}x+10=15\\x+10=-15\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-25\end{cases}}}\)
b.
\(\left|x-3\right|+5=7\Rightarrow\left|x-3\right|=2\Rightarrow\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
c.
\(\left|x-3\right|+12=6\Rightarrow\left|x-3\right|=-6\Rightarrow x=\Phi\)
Phương trình vô nghiệm
d.
\(\left(2x+4\right)\left(3x-9\right)=0\Rightarrow\orbr{\begin{cases}2x+4=0\\3x-9=0\end{cases}\Rightarrow}\orbr{\begin{cases}2x=-4\\3x=9\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
e.
\(x^2-5x=0\Rightarrow x\left(x-5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
f.
\(\left(x+3\right)\left(4-2x\right)=70\Rightarrow4x-2x^2+7-6x=70\Rightarrow2x^2+2x+63=0\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{123}{2}=0\)(vô lí)
Vậy phương trình vô nghiệm
x(x + 7) = 0
=> x = 0 hoac x + 7 = 0
=> x = 0 hoac x = -7
cac phan sau tt
c) (-x + 5)(3 - x) = 0
=> \(\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}}\)
=> \(\orbr{\begin{cases}-x=-5\\x=3\end{cases}}\)
=> \(\orbr{\begin{cases}x=5\\x=3\end{cases}}\)
Vậy...