\(^2-2y^2-2xy+y\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 12 2022

\(A=-\left(x^2+2xy+y^2\right)-\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{8089}{4}\)

\(A=-\left(x+y\right)^2-\left(y-\dfrac{1}{2}\right)^2+\dfrac{8089}{4}\)

Do \(\left\{{}\begin{matrix}-\left(x+y\right)^2\le0\\-\left(y-\dfrac{1}{2}\right)^2\le0\end{matrix}\right.\) ; \(\forall x;y\)

\(\Rightarrow A\le\dfrac{8089}{4};\forall x;y\)

Vậy \(A_{max}=\dfrac{8089}{4}\) khi \(\left\{{}\begin{matrix}x+y=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)

13 tháng 8 2020

Bài làm:

a) Sửa đề:

\(A=4x-x^2=-\left(x^2-4x+4\right)+4\)

\(=-\left(x-2\right)^2+4\le4\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(A_{Max}=4\Leftrightarrow x=2\)

b) \(B=-x^2-4x+5=-\left(x^2+4x+4\right)+9\)

\(=-\left(x+2\right)^2+9\le9\)

Dấu "=" xảy ra khi: \(-\left(x+2\right)^2=0\Rightarrow x=-2\)

Vậy \(B_{Max}=9\Leftrightarrow x=-2\)

c) \(C=-x^2-2y^2-2xy+2y\)

\(C=-\left(x^2+2xy+y^2\right)-\left(y^2-2y+1\right)+1\)

\(C=-\left(x+y\right)^2-\left(y-1\right)^2+1\le1\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+y\right)^2=0\\-\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy \(C_{Max}=1\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

13 tháng 8 2020

a) Sửa : A = 4x - x2

A = -x2 + 4x - 4 + 4

A = -( x2 - 4x + 4 ) + 4

A = -( x - 2 )2 + 4

-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 ) + 4 ≤ 4

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMax = 4 , đạt được khi x = 2

b) B =  -x2 - 4x + 5 = -x2 - 4x - 4 + 9 = -( x2 + 4x + 4 ) + 9 = -( x + 2 )2 + 9

-( x + 2 )2 ≤ 0 ∀ x => -( x + 2 )2 + 9 ≤ 9 

Dấu " = " xảy ra <=> x + 2 = 0 => x = -2

Vậy BMax = 9, đạt được khi x = -2

c) C = -x2 - 2y2 - 2xy + 2y

= ( -x2 - 2xy - y2 ) + ( -y2 + 2y -1 ) + 1

= -( x2 + 2xy + y2 ) - ( y2 - 2y + 1 ) + 1

= -( x + y )2 - ( y - 1 )2 + 1

\(\hept{\begin{cases}-\left(x+y\right)^2\le0\\-\left(y-1\right)^2\le0\end{cases}\Rightarrow}-\left(x+y\right)^2-\left(y-1\right)^2+1\le1\forall x,y\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy CMax = 1 , đạt được khi x = -1 ; y = 1

a/ giá trị nhỏ nhất của A  là 2

b/ giá trị lớn nhất của B là 51

2 tháng 8 2021

tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm

Ta có: x + y = 1
   <=> (x + y)3 = 1
   <=> x3 + y3 + 3xy(x + y) = 1
   <=> x3 + y3 + 3xy = 1 (do x + y = 1)
   <=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
   xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x =  y = 12

16 tháng 5 2019

\(2xy+2x-5z=0\Leftrightarrow z=\frac{2xy+2x}{5}\)

Sau đấy bn thay z vào là ra 

3 tháng 11 2020

Ta có: \(2xy+2x-5z=0\Rightarrow z=\frac{2xy+2x}{5}\)

Thay \(z=\frac{2xy+2x}{5}\)vào A, ta được: \(A=x^2+2y^2+2xy+\frac{8}{5}y+\frac{2xy+2x}{5}+2=x^2+2y^2+\frac{12}{5}xy+\frac{8}{5}y+\frac{2}{5}x+2\)\(=\left(x^2+\frac{12}{5}xy+\frac{36}{25}y^2\right)+\frac{2}{5}\left(x+\frac{6}{5}y\right)+\frac{1}{25}+\left(\frac{14}{25}y^2+\frac{28}{25}y+\frac{14}{25}\right)+\frac{7}{5}\)\(=\left[\left(x+\frac{6}{5}y\right)^2+\frac{2}{5}\left(x+\frac{6}{5}y\right)+\frac{1}{25}\right]+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\)\(=\left(x+\frac{6}{5}y+\frac{1}{5}\right)^2+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\ge\frac{7}{5}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+\frac{6}{5}y+\frac{1}{5}=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\Rightarrow z=0\)

3 tháng 3 2018

mấy bạn chuyên toán giải giùm mk bài b) giùm ạ, mk đaq rất cần

hoc tot de lam lien doi nho chua.

7 tháng 4 2018

\(A=2x^2+y^2-2xy-2x+3\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

Vậy Min A = 2 khi x=y=1

15 tháng 2 2020

\(x^2+2xy+6x+6y+2y^2+8=0\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)

\(\Leftrightarrow\left(x+y+3\right)^2=1-y^2\)

Ta thấy : \(1-y^2\le1\forall y\) \(\Rightarrow\left(x+y+3\right)^2\le1\)

\(\Rightarrow-1\le x+y+3\le1\)

\(\Rightarrow-1+2013\le x+y+3+2013\le1+2013\)

\(\Rightarrow2012\le x+y+2016\le2014\)

Vậy ta có : 

+) Min \(B=2012\) . Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-4\end{cases}}\)

+) Max \(M=2014\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)