Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 7 và \(\sqrt{37}+1\)
=7 và 7,08
=>......
b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)
=-3,95 và 9,95
=>.....
a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)
\(\sqrt{6}< \sqrt{6,25}=2,5\);
\(\sqrt{12}< \sqrt{12,25}=3,5\);
\(\sqrt{20}< \sqrt{20,25}=4,5\)
=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)
Vậy P < 12
Answer:
ý a, tham khảo bài làm của @xyzquynhdi
\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)
a)
Ta có:
\(\left(\sqrt{26}+\sqrt{5}\right)^2=26+2\sqrt{26}\sqrt{5}+5\)
\(=31+2\sqrt{130}\)(1)
Mặt khác: \(\left(\sqrt{7}\right)^2=7\) (2)
Từ (1) và (2) =>\(\sqrt{26}+\sqrt{5}>\sqrt{7}\)
a) \(\sqrt{26}+\sqrt{5}< \sqrt{25}+\sqrt{4}=5+2=7\)
b) \(\sqrt{8}+\sqrt{24}< \sqrt{9}+\sqrt{25}=3+5=8\)
\(\sqrt{65}>\sqrt{64}=8\)
\(\Rightarrow\sqrt{8}+\sqrt{24}< \sqrt{65}\)
a/ \(\sqrt{2}+\sqrt{6}\)
b/ Sửa đề:
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}=1\)
c/ \(1+\sqrt{2}+\sqrt{5}\)
Bài 2:
\(A=\sqrt{26}+\sqrt{10}>\sqrt{25}+\sqrt{9}=5+3=8\)
\(B=\sqrt{64}=8\)
Do đó: A>B
1.Ta có:
\(A=\)\(\sqrt{13}+\sqrt{20}=\sqrt{13}+2\sqrt{5}\)
\(B=\)\(\sqrt{24}+\sqrt{19}=\sqrt{19}+2\sqrt{6}\)
So sánh ta thấy:
\(\sqrt{13}<\sqrt{19}\) ; \(2\sqrt{5}<2\sqrt{6}\)
Vậy A < B