K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5:

a) Ta có: \(x^4+4\)

\(=x^4+4\cdot x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b) Ta có: \(x^4+64\)

\(=x^4+16x^2+64-16x^2\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

c) Ta có: \(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+1\)

\(=x^6\left(x^2+x+1\right)-\left(x^6-1\right)\)

\(=x^6\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)

\(=\left(x^2+x+1\right)\left[x^6-\left(x-1\right)\left(x^3+1\right)\right]\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x-x^3-1\right)\)

d) Ta có: \(x^8+x^4+1\)

\(=x^8+x^4+x^6-x^6+1\)

\(=x^4\left(x^4+x^2+1\right)-\left(x^6-1\right)\)

\(=x^4\left(x^4+x^2+1\right)-\left(x^2-1\right)\left(x^4+x^2+1\right)\)

\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)

g) Ta có: \(x^4+2x^2-24\)

\(=x^4+6x^2-4x^2-24\)

\(=x^2\left(x^2+6\right)-4\left(x^2+6\right)\)

\(=\left(x^2+6\right)\left(x^2-4\right)\)

\(=\left(x^2+6\right)\left(x-2\right)\left(x+2\right)\)

i) Ta có: \(a^4+4b^4\)

\(=a^4+4a^2b^2+4b^4-4a^2b^2\)

\(=\left(a^2+2b^2\right)^2-\left(2ab\right)^2\)

\(=\left(a^2-2ab+2b^2\right)\left(a^2+2ab+2b^2\right)\)

30 tháng 8 2021

ý e đâu

 

6 tháng 10 2019

\(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)

\(+\left(x^7-x^5+x^4-x^2+x\right)\)

\(+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

6 tháng 10 2019

\(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

8 tháng 2 2019

Bài 1 :

\(A=\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8\)

\(A=\left[\left(x-1\right)\left(x+7\right)\right]\left[\left(x-2\right)\left(x+8\right)\right]+8\)

\(A=\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8\)

Đặt \(a=x^2+6x-7\)

\(A=a\left(a-9\right)+8\)

\(A=a^2-9a+8\)

\(A=a^2-8a-a+8\)

\(A=a\left(a-8\right)-\left(a-8\right)\)

\(A=\left(a-8\right)\left(a-1\right)\)

Thay a vào là xong bạn :)

cảm ớn phương nhiều

19 tháng 6 2016

a)x7+x5+1=x7+x6-x6+2x5-x5+x4-x4+x3-x3+x2-x2+1

=x7-x6+x5-x3+x2+x6-x5+x4-x2+x+x5-x4+x3-x+1

=x2(x5-x4+x3-x+1)+x(x5-x4+x3-x+1)+1(x5-x4+x3-x+1)

=(x2+x+1)(x5-x4+x3-x+1)

b)4x4-32x2+1=4x4+12x3+2x2-12x3-36x2-6x+2x2+6x+1

=2x2(2x2+6x+1)-6x(2x2+6x+1)+1(2x2+6x+1)

=(2x2-6x+1)(2x2+6x+1)

c)x6+27=(x2+3)(x2-3x+3)(x2+3x+3)

d)3(x4+x2+1)-(x2+x+1)

=3x4-3x3+2x2+3x3-3x2+2x+3x2-3x+2

=x2(3x2-3x+2)+x(3x2-3x+2)+1(3x2-3x+2)

=(x2+x+1)(3x2-3x+2)

e)bạn tự làm nhé

6 tháng 8 2020

a, ( x2 + x )2 - 14 ( x2 + x ) + 24

= (x2 + x)2 - 2(x2 + x) -12(x2 + x) + 24

= (x2 + x).(x2 + x -2) - 12(x2 + x -2)

= (x2 + x -2).(x2 + x -12)

= (x2 + 2x - x - 2).(x2 + 4x - 3x - 12)

=[x.(x+2)-(x+2)].[x.(x+4)-3(x+4)]

= (x+2).(x-1).(x+4).(x-3)

= x4 + 2x3 - 13x2 - 14x + 24

b, ( x2 + x )2 + 4x2 + 4x - 12

= x4 + 2x3 + x2 + 4x2 + 4x -12

= x4 + 2x3 + 5x2 + 4x -12

c, x4 + 2x3 + 5x2 + 4x - 12

= x4 - x3 + 3x3 - 3x2 + 8x2 - 8x +12x -12

= x3(x-1) + 3x2(x-1) + 8x(x-1) + 12(x-1)

= (x-1) . (x3 + 3x2 + 8x +12)

= (x-1) . ( x3 +2x2 + x2 + 2x + 6x +12)

= (x-1). [x2(x+2) + x(x+2) + 6(x+2)]

= (x-1).(x+2).(x2 + x+ 6)

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

d)

$x^4+2x^3+2x^2+2x+1$

$=(x^4+2x^3+x^2)+(x^2+2x+1)$

$=(x^2+x)^2+(x+1)^2=x^2(x+1)^2+(x+1)^2$

$=(x+1)^2(x^2+1)$

e)

$x^2y+xy^2+x^2z+y^2z+2xyz$

$=xy(x+y)+z(x^2+y^2)+2xyz$

$=xy(x+y)+z(x^2+y^2+2xy)$

$=xy(x+y)+z(x+y)^2=(x+y)(xy+zx+zy)$

f)

$x^5+x^4+x^3+x^2+x+1$

$=(x^5+x^4)+(x^3+x^2)+(x+1)=x^4(x+1)+x^2(x+1)+(x+1)$

$=(x+1)(x^4+x^2+1)$

$=(x+1)[(x^4+2x^2+1)-x^2]$

$=(x+1)[(x^2+1)^2-x^2]=(x+1)(x^2+1-x)(x^2+1+x)$

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

a)

$x^4-2x^3+2x-1=(x^4-2x^3+x^2)-(x^2-2x+1)$

$=(x^2-x)^2-(x-1)^2$

$=x^2(x-1)^2-(x-1)^2=(x-1)^2(x^2-1)=(x-1)^2(x-1)(x+1)$

$=(x-1)^3(x+1)$

b)

$a^6-a^4+2a^3+2a^2$

$=a^4(a^2-1)+2a^2(a+1)$

$=a^4(a-1)(a+1)+2a^2(a+1)$

$=(a+1)[a^4(a-1)+2a^2]$

$=a^2(a+1)[a^2(a-1)+2]$

$=a^2(a+1)(a^3-a^2+2)=a^2(a+1)[a^2(a+1)-2(a^2-1)]$

$=a^2(a+1)[a^2(a+1)-2(a-1)(a+1)]$

$=a^2(a+1)(a+1)(a^2-2a+2)=a^2(a+1)^2(a^2-2a+2)$

c)

$x^4+x^3+2x^2+x+1$

$=(x^4+2x^2+1)+(x^3+x)$

$=(x^2+1)^2+x(x^2+1)=(x^2+1)(x^2+1+x)$

\(x^4+4=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

\(x^4+2x^2-24=\left(x^2+6\right)\cdot\left(x^2-4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+6\right)\)

30 tháng 8 2021

đẳng cấp