Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tính BC:
Ta có: Aˆ=90oA^=90o (ΔABC vuông tại A) {o là độ}
Áp dụng định lí PITAGO đối với ΔABC:
Ta có: BC2 = AB2 + AC2
=> BC2 = 62 + 82
=> BC2 = 100
=> BC =100−−−√=10(cm)100=10(cm)
b) ΔABK là tam giác...:
Ta có:
BK (BD) là đường phân giác của góc B (1)
AE vuông góc với BK (BD)
=> BK là đường vuông góc (2)
Từ (1) và (2):
=> ABK là tam giác cân (vì tam giác có đường phân giác đồng thời là đường cao là tam giác cân)
c) DK ⊥ BC:
Vì ΔKED vuông tại E (do AE ⊥ BD)
Ta có: E=90o⇒EKDˆ+KDEˆ=90oE=90o⇒EKD^+KDE^=90o
Áp dụng tính chất góc ngoài của tam giác bằng tổng hai góc trong không kề với nó:
⇒DKCˆ=EKDˆ+KDEˆ=90o
hay DK ⊥ BC.
a: Xét ΔBAD và ΔBKD có
BA=BK
\(\widehat{ABD}=\widehat{KBD}\)
BD chung
Do đó: ΔBAD=ΔBKD
Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)
hay DK\(\perp\)BC
b: Xét ΔBEC có BE=BC
nên ΔBEC cân tại B
mà BI là đường phân giác
nên BI là đường cao
a) Xét \(\Delta ABD\) và \(\Delta EBD:\)
BD chung.
\(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác \(\widehat{B}).\)
\(\Rightarrow\Delta ABD=\Delta EBD\) (cạnh huyền - góc nhọn).
\(\Rightarrow\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).
Mà \(\widehat{BAD}=90^o\left(\widehat{BAC}=90^o\right).\)
\(\Rightarrow\widehat{BED}=90^o.\)
\(b)\Delta ABD=\Delta EBD\left(cmt\right).\\ \Rightarrow AB=EB.\)
Xét \(\Delta ABE:\)
\(AB=EB\left(cmt\right).\)
\(\Rightarrow\Delta ABE\) cân tại B (Tính chất tam giác cân).
Xét \(\Delta ABE\) cân tại B:
BD là phân giác \(\widehat{B}\left(gt\right).\)
\(\Rightarrow\) BD là trung trực của AE (Tính chất các đường trong tam giác cân).
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)