Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\Delta\)BED có H là trung điểm của DE và BH \(\perp\) DE
=> \(\Delta\)BED cân ở B
=> Góc BED = Góc BDE
Góc BDE = Góc ADC (đối đỉnh)
=> Góc BED = Góc ADC
\(\Delta\)BED cân ở B => BH là phân giác của góc EBD
=> gócEHB = gócDBH
mà gócDBH = 90⁰ - gócBFA = 90⁰ - gócHFC = gócACD
=> gócEBH = gócACD
b, gócEBH = gócACD = gócDCB (vì CH là phân giác của gócACB)
= 90⁰ - gócCBH
=> gócEHB + gócCBH = 90⁰
=> BE \(\perp\) BC
c, △FBC có CH \(\perp\) BF ; BA \(\perp\) FC ; CH \(\cap\) BA = D
=> D là trực tâm của \(\Delta\)FBC
=> FD \(\perp\) BC
BE \(\perp\) BC
=> FD//BE
1) a,△BED có H là trung điểm của DE và BH ┴ DE
=> △BED cân ở B
=> ∠BED = ∠BDE
∠BDE = ∠ADC (đối đỉnh)
=> ∠BED = ∠ADC
△BED cân ở B => BH là phân giác của ∠EBD
=> ∠EHB = ∠DBH
mà ∠DBH = 90⁰ - ∠BFA = 90⁰ - ∠HFC = ∠ACD
=> ∠EBH = ∠ACD
b, ∠EBH = ∠ACD = ∠DCB (vì CH là phân giác của ∠ACB)
= 90⁰ - ∠CBH
=> ∠EHB + ∠CBH = 90⁰
=> BE ┴ BC
c, △FBC có CH ┴ BF ; BA ┴ FC ; CH ⋂ BA = {D}
=> D là trực tâm của △FBC
=> FD ┴ BC
BE ┴ BC
=> FD//BE
a) Xét ΔBDH vuông tại H và ΔBEH vuông tại H có
BH chung
DH=EH(H là trung điểm của DE)
Do đó: ΔBDH=ΔBEH(hai cạnh góc vuông)
Suy ra: \(\widehat{BDH}=\widehat{BEH}\)(hai góc tương ứng)
mà \(\widehat{BDH}=\widehat{ADC}\)(hai góc đối đỉnh)
và \(\widehat{CEB}=\widehat{BEH}\)
nên \(\widehat{CEB}=\widehat{ADC}\)(đpcm)
Ta có: ΔBDH=ΔBEH(cmt)
nên \(\widehat{DBH}=\widehat{EBH}\)(hai góc tương ứng)(1)
Xét ΔADC vuông tại A và ΔHDB vuông tại H có
\(\widehat{ADC}=\widehat{HDB}\)(hai góc đối đỉnh)
Do đó: ΔADC\(\sim\)ΔHDB(g-g)
Suy ra: \(\widehat{ACD}=\widehat{HBD}\)(hai góc tương ứng)(2)
Từ (1) và (2) suy ra \(\widehat{EBH}=\widehat{ACD}\)(Đpcm)
Mik nghĩ phần a) sai đề. Phần a) phải chứng minh góc CBH= góc ADC
a) Có: CD là tia phân giác của góc C
=> góc ACD= góc BCH
Mà góc BCH+góc CBH=90o
góc ACD+góc ADC=90o
=> góc CBH=góc ADC (đpcm)
b) Dễ c/m: tam giac BHE=tam giac BHD (c.g.c)
=> góc BEH=góc BDH (t/ư)
=> góc BEC=góc CBH (=góc CDA)
Mà góc CBH+góc BCH=90o
=> góc BEC+góc BCH=90o
=> góc CBE=90o
=> BE vuông góc với BC
c) Dễ c/m: tam giác CBH=tam giác CFH (g.c.g)
=> CF=CB (t/ư)
=> tam giác CDF=tam giác CDB (c.g.c)
=> DF=DB (t/ư)
=> tam giác DBF cân tại D
=> góc DBF=góc DFB
Mà góc DBF=góc EBF
=> góc EBF=góc DFB
Mà 2 góc này ở vị trí so le trong
=> DF song song với BE
NHỚ TÍCH CHO MIK NHÉ ^^
a,△BED có H là trung điểm của DE và BH ┴ DE
=> △BED cân ở B
=> ∠BED = ∠BDE
∠BDE = ∠ADC (đối đỉnh)
=> ∠BED = ∠ADC
△BED cân ở B => BH là phân giác của ∠EBD
=> ∠EHB = ∠DBH
mà ∠DBH = 90⁰ - ∠BFA = 90⁰ - ∠HFC = ∠ACD
=> ∠EBH = ∠ACD
b, ∠EBH = ∠ACD = ∠DCB (vì CH là phân giác của ∠ACB)
= 90⁰ - ∠CBH
=> ∠EHB + ∠CBH = 90⁰
=> BE ┴ BC
c, △FBC có CH ┴ BF ; BA ┴ FC ; CH ⋂ BA = {D}
=> D là trực tâm của △FBC
=> FD ┴ BC
BE ┴ BC
=> FD//BE