K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAPH có

AM vừa là đường cao, vừa là trung tuyến

=>ΔAPH cân tại A

=>AP=AH

=>AM là phân giác của góc PAH

Xét ΔAEP và ΔAEH có

AP=AH

góc EAP=góc EAH

AE chung

=>ΔAEP=ΔAEH

b: Xét ΔAHQ có

AN vừa là đường cao, vừa là trung tuyến

=>ΔAHQ cân tại A

=>AH=AQ=AP

12 tháng 3 2018

a) Do ABC là tam giác cân tại A nên AH là đường cao hay đồng thời là đường phân giác.

Xét tam giác vuông AMH và tam giác vuông ANH có:

Cạnh AH chung

\(\widehat{MAH}=\widehat{NAH}\)

\(\Rightarrow\Delta AMH=\Delta ANH\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow HM=HN.\)

b) Dễ dàng thấy ngay AC là đường trung trực của HF.

Khi đó thì AH = AF; CH = CF

Xét tam giác AHC và tam giác AFC có:

Cạnh AC chung

AH - AF

CH = CF

\(\Rightarrow\Delta AHC=\Delta AFC\left(c-c-c\right)\)

\(\Rightarrow\widehat{AFC}=\widehat{AHC}=90^o\Rightarrow AF\perp CF.\)

c) Ta thấy ngay \(\Delta HIN=\Delta FCN\left(g-c-g\right)\)

\(\Rightarrow IN=CN\)

Xét tam giác vuông INF và tam giác vuông CNH có:

HN = FN

IN = CN

\(\Rightarrow\Delta INF=\Delta CNH\)  (Hai cạnh góc vuông)

\(\Rightarrow\widehat{IFN}=\widehat{CHN}\)

Mà chúng lại ở vị trí so le trong nên IF // BC.

d) Chứng minh tương tự câu c, ta có IE // BC

Vậy thì qua I có hai tia IE và IF cùng song song với BC nên chúng trùng nhau.

Vậy I, E, F thẳng hàng.

a: Xét tứ giác ABEC có

M là trung điểm của AE

M là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: AB=EC

b: Xét ΔMHB vuông tại H và ΔMIC vuông tại I có

MB=MC

\(\widehat{MBH}=\widehat{MCI}\)

Do đó: ΔMHB=ΔMIC

Suy ra: MH=MI

c: Ta có: ΔMHB=ΔMIC

nên \(\widehat{HMB}=\widehat{IMC}\)

=>\(\widehat{HMB}+\widehat{IMB}=180^0\)

=>H,M,I thẳng hàng

mà MH=MI

nên M là trung điểm của HI

a: Xét ΔAHD có 

AN là đường cao

AN là đường trung tuyến

Do đó:ΔAHD cân tại A

mà AB là đường trung tuyến

nên AB là tia phân giác của góc HAD(1)

Xét ΔAHE có 

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHE cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAE(2)

Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)

hay D,A,E thẳng hàng

b: Xét ΔHED có

M là trung điểm của HE

N là trung điểm của HD

Do đó: MN là đường trung bình

=>MN//ED

d: Xét ΔDHE có 

HA là đường trung tuyến

HA=DE/2

Do đó:ΔDHE vuông tại H

28 tháng 1 2016

chit

28 tháng 1 2016

ai choi army2 k

Bài 1:Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CBlấy điểm N sao cho MB = CN. Từ B hạBE AM ( E AM) ⊥ , từ C hạCF AN ( F AN) ⊥ Chứng minh rằng:a/ Tam giác AMN cân b/ BE = CF c/  BME = CNFBài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đườngthẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BACBài 3:...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB
lấy điểm N sao cho MB = CN. Từ B hạ

BE AM ( E AM) ⊥ 

, từ C hạ

CF AN ( F AN) ⊥ 

Chứng minh rằng:
a/ Tam giác AMN cân b/ BE = CF c/

  BME = CNF
Bài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đường
thẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BAC
Bài 3: Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d ( d không cát đoạn
thẳng BC). Từ B hạ

BE d ( E d) ⊥ 

, từ C hạ

CF d ( F d) ⊥ 

. So sánh: BE + CF và FE?
Bài 4: Cho tam giác ABC vuông cân tại A, kẻ AH vuông góc với BC ( H thuộc BC). Từ
H kẻ
HM AC ⊥

và trên tia HM lấy điểm E sao cho HM = EM. Kẻ

HN AB ⊥

và trên tia

HN lấy điểm D sao cho NH = ND. Chứng minh rằng:
a/ Ba điểm D; A; E thẳng hàng
b/ BD // CE
c/ BC = BD + CE
Bài 5: Cho tam giác ABC vuông cân tại A, D là trung điểm của AC. Từ A kẻ đường
thẳng vuông góc với BD, cắt BC tại E. Chứng minh rằng: AE = 2DE.

0