Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha bạn
Vì AD là đường phân giác của góc A
=> \(\widehat{BAD}=\widehat{DAE}\)
Vì AB//ED =>\(\widehat{BAD}=\widehat{EDA}\)(2 góc so le trong)
Mà góc BAD=góc DAE=> \(\widehat{DAE}=\widehat{EDA}\)
=> tam giác EAD cân tại E
=>EA=ED
Ta có: AB//ED cắt FE//BC => BF=ED(theo tính chất đoạn chắn)
Mà EA=ED=> AE=BF(=ED)
Em tham khảo tại đây nhé.
Câu hỏi của Hoàng Trang - Toán lớp 7 - Học toán với OnlineMath
ta có DE//AB
mà góc KAD =góc EAD(tia p/g góc A)
=> góc KAD=góc EAD (hai góc so le trong )
xét tam giác EAD có
góc EAD=góc EDA(hai góc ở đáy bằng nhau )
vậy tam giác EAD CÂN TẠI E
Chứng minh tứ giác AEDF là hình thoi
Þ EF là phân giác của A E D ^
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
A B C D G K M F E
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
A B C M N 38 11 8
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
Xét tư giác AEDF có
DF//AE; DE//AF => AEDF là hình bình hành
Gọi O là giao của AD và EF => IA=ID và IE=IF
Xét tg AEFF có
IE=IF => AI là đường trung tuyến của tg AEF
mà AI là phân giác của \(\widehat{BAC}\)
=> tg AEF cân tại A (tg có đường trung tuyến đồng thời là đường phân giác thì tg đó là tg cân) \(\Rightarrow AD\perp EF\) (trong tg cân đường trung tuyến đồng thời là đường cao)
=> AEDF là hình thoi (Hình bh có hai đường chéo vuông góc nhau là hình thoi
=> EA=ED
Xét tg AEI và tg DEI có
EA=ED
IA=ID
EI chung
=> tg AEI=tgDEI (c.c.c) \(\Rightarrow\widehat{AEF}=\widehat{DEF}\) => EF là phân giác của \(\widehat{AED}\)
a) Ta có: DE//AB(gt)
=> \(\widehat{ADE}=\widehat{BAD}\)(so le trong)
Mà \(\widehat{BAD}=\widehat{DAE}\)(AD là phân giác)
\(\Rightarrow\widehat{ADE}=\widehat{DAE}\)
=> Tam giác AED cân tại E
b) Xét tứ giác BFED có:
EF//BD
ED//BF
=> BFED là hình bình hành
=> ED=BF
Mà AE=ED(AED cân tại E)
=> AE=BF