Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: DE//AB(gt)
=> \(\widehat{ADE}=\widehat{BAD}\)(so le trong)
Mà \(\widehat{BAD}=\widehat{DAE}\)(AD là phân giác)
\(\Rightarrow\widehat{ADE}=\widehat{DAE}\)
=> Tam giác AED cân tại E
b) Xét tứ giác BFED có:
EF//BD
ED//BF
=> BFED là hình bình hành
=> ED=BF
Mà AE=ED(AED cân tại E)
=> AE=BF

a, BC sử dụng py ta go : => BC = 29
b, AD là p/g => BD/DC = AB / AC = 20/21
=> BD /20 = DC/21 = BD+DC / 20 + 21 = 29/41
=> BD = 29/41 . 20 = 580/41
=> DC = 29/41 . 21 = 609/41
b, AB// DF
AB vg AC
=> DF vuông góc với AC
DE // AC
AB vg AC
=> DE vg AB
tg AFDE có ba giocs vuông => AFDE là HCN
Sử dụng ta let thì phải

Hình tự vẽ nha bạn
Vì AD là đường phân giác của góc A
=> \(\widehat{BAD}=\widehat{DAE}\)
Vì AB//ED =>\(\widehat{BAD}=\widehat{EDA}\)(2 góc so le trong)
Mà góc BAD=góc DAE=> \(\widehat{DAE}=\widehat{EDA}\)
=> tam giác EAD cân tại E
=>EA=ED
Ta có: AB//ED cắt FE//BC => BF=ED(theo tính chất đoạn chắn)
Mà EA=ED=> AE=BF(=ED)

a: Xét tứ giác AEDF có
AE//DF
AF//DE
Do đó: AEDF là hình bình hành
Hình bình hành AEDF có AD là phân giác của góc FAE
nên AEDF là hình thoi
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{CD}{DB}=\dfrac{AC}{AB}\left(1\right)\)
Xét ΔABC có DE//AB
nên \(\dfrac{CD}{DB}=\dfrac{CE}{EA}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AC}{AB}=\dfrac{EC}{EA}\)
=>\(AC\cdot AE=AB\cdot EC\)

a: \(BC=\sqrt{20^2+21^2}=29\left(cm\right)\)
b: AD là phân giác
=>BD/AB=CD/AC
=>BD/20=CD/21=29/41
=>BD=580/41cm; CD=609/41cm
c: Xet tứ giác AEDF có
AE//DF
DE//FA
góc FAE=90 độ
AD là phan giác của góc FAE
=>AEDF là hình vuông

Em tham khảo tại đây nhé.
Câu hỏi của Hoàng Trang - Toán lớp 7 - Học toán với OnlineMath

a) Xét tứ giác AEDF có
FD//AE(gt)
AF//DE(gt)
Do đó: AEDF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
A B C D E F O
Ta có
DE//AB (gt) => DE//AF
DF//AC (gt) => DF//AE
=> AEDF là hbh (Tứ giác có 2 cặp cạnh đối // với nhau là hbh)
Gọi O là giao của AD và EF
=> OE=OF (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
Mà \(\widehat{BAD}=\widehat{CAD}\) (gt)
=> tg AEF là tg cân tại A (Tam giác có đường trung tuyến đồng thời là đường phân giác là tg cân)
=> AE=AF
=> AEDF là hình thoi (Hình bình hành có 2 cạnh liền kề bằng nhau là hình thoi)