Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x+2y\right)\left(3x+4y\right)=96\) ( x,y nguyên)
Lại có: \(3x+4y-\left(x+2y\right)=2x+2y\) ( chẵn)
=> 3x+4y , x+2y cùng chẵn hoặc cùng lẻ ( 1)
Mà (x+2y)(3x+4y)=96 chẵn
=> 3x+4y, x+2y cùng chẵn hoặc là một chẵn 1 lẻ ( 2)
Từ (1) và (2) => 3x+4y, x+2y cùng chẵn
Ta có bảng sau:
3x+4y | 48 | 2 | 24 | 4 | 16 | 6 | 12 | 8 |
x+2y | 2 | 48 | 4 | 24 | 6 | 16 | 8 | 12 |
x | 44 | -94 | 16 | -44 | 4 | -26 | -4 | -16 |
y | -21 | 71 | -6 | 34 | 1 | 21 | 6 | 14 |
Vậy ...
Ta có : 3x^2+14y^2+13xy=330
(=) x2 +14/3y2+13/3xy=110
(=) x2+2.13/6xy+169/36y2-169/36y2+14/3y2=110
=> (x+13/6y)2 -1/36y^2=110
(=) (x+13/6y-1/6y)(x+13/6y+1/6y)=110
=)(x+2y)(x+7/3y)=2.5.11=10.11=11.10=22.5=5.22=55.2=2.55
=> x=4;y=3
a)
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | \(\sqrt{22}\)(loại | \(2\sqrt{7}\)(loại) | \(\sqrt{46}\)(loại) | 10(thoả mãn) | \(\sqrt{262}\) |
\(\Rightarrow\left(x,y\right)=\left(4;10\right)\)
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
Bài 1:
3x+2y=7
\(\Leftrightarrow3x=7-2y\)
\(\Leftrightarrow x=\dfrac{7-2y}{3}\)
Vậy: \(\left\{{}\begin{matrix}y\in R\\x=\dfrac{7-2y}{3}\end{matrix}\right.\)
5)
a) \(3x+8y=26\)
\(\Leftrightarrow y=\dfrac{26-3x}{8}\)
Vì \(y\inℤ\) nên \(\dfrac{26-3x}{8}\inℤ\)
\(\Rightarrow26-3x⋮8\)
\(\Leftrightarrow3x\equiv2\left(mod8\right)\)
Vì \(ƯCLN\left(3,8\right)=1\) nên đặt \(x=8q+r\left(0\le r< 8\right)\) thì:
\(3\left(8q+r\right)\equiv2\left(mod8\right)\)
\(\Leftrightarrow24q+3r\equiv2\left(mod8\right)\)
\(\Leftrightarrow3r\equiv2\left(mod8\right)\)
Thử từng trường hợp, ta thấy ngay \(r=6\).
Vậy \(x=8q+6\)
\(\Rightarrow y=\dfrac{26-3x}{8}=\dfrac{26-3\left(8q+6\right)}{8}=\dfrac{8-24q}{8}=1-3q\)
Vậy phương trình đã cho có nghiệm nguyên là \(\left(8q+6,1-3q\right)\) với \(q\inℤ\) bất kì.
b) Cho \(1-3q>0\Leftrightarrow q< \dfrac{1}{3}\)
Cho \(8q+6>0\Leftrightarrow q>-\dfrac{3}{4}\)
Do đó \(-\dfrac{3}{4}< q< \dfrac{1}{3}\). Mà \(q\inℤ\Rightarrow q=0\)
Thế vào \(x,y\), pt sẽ có nghiệm nguyên dương là \(\left(6;1\right)\)
Câu 6 làm tương tự nhé bạn.