K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2020

a) Xét ΔABE ΔACE ta có:

AE chung

AB=AC

EABˆ=EACˆ(AE là đường phân giác của góc BAC)

Do đó ΔABE=ΔACE(c-g-c)

Vậy ​BEAˆ=CEAˆ​(hai góc tương ứng)

AB=AC(hai cạnh tương ứng)

b) Do đó ΔABCcân ,mà có AE là đường phân giác nên AE cũng là đường trung trực của ΔABC

=> AE là đường trung trực của BC

8 tháng 5 2020

a) Xét 2 ΔABE và ΔACE có:

AB=AC (giả thiết) (1)

EB=EC (vì E là trung điểm của BC) (2)

AE là đường thẳng chung (3)

⇒ΔABE=ΔACE (cạnh - cạnh - cạnh) (4)

b) Từ (1),(2),(3) và (4) suy ra:

Góc AEB = góc AEC (2 góc tương ứng)

⇒AE là đường trung trực của BC

1 tháng 12 2017

có AB=AC suy ra tam giác ABC cân

mà AE là phân giác góc BAC suy ra AE là đg cao (tính chất)và cũng suy ra b)AE là đg trung trực của BC

xét 2 tam giác vuông ABE và ACE co\(\hept{\begin{cases}AB=AC\\AElàcanhchung\end{cases}}\)

suy ra 2 tam giác bằng nhau

21 tháng 12 2019

a) Xét ΔABE và ΔADE có:

AE: chung

BAE=DAE(AE: pg BAC) 

AB=AD(gt) 

=>ΔABE=ΔADE(c.g.c) 

=>đpcm

b) Từ cm(a) 

=>EB=ED(2 cạnh tương ứng) (*)

=>AEB=AED

Mà AEB+AED=180o

=>2AEB=180o

=>AEB=90o

=>AE\(\perp\) BD (**)

Từ (*) và (**)

=>AE là trung trực BD(đpcm) 

2 tháng 7 2019

B1 : 

Cách 1 :

Xét \(\Delta NMB\)và \(\Delta NMC\)có :

NB = NC  ( gt )

NM là cạnh chung

MB = MC ( do M là trung điểm của BC )

nên \(\Delta NMB=\Delta NMC\left(c.c.c\right)\)

Cách 2 :

Do NB = NC => tam giác NBC cân tại N => \(\widehat{NBM}=\widehat{NCM}\)

Xét \(\Delta NMB\)và \(\Delta NMC\)có :

NB = NC ( gt )

\(\widehat{NBM}=\widehat{NCM}\)( CMT )

MB = MC ( do M là trung điểm của BC )

nên \(\Delta NMB=\Delta NMC\left(c.g.c\right)\)

Cách còn lại tự làm nhá

B2 :

Cách 1 :

\(\Delta ABC\)có AB = AC => \(\Delta ABC\)cân tại A => \(\widehat{B}=\widehat{C}\)

AE là tia p/g của \(\widehat{BAC}\) => \(\widehat{BAE}=\widehat{CAE}\)

Xét \(\Delta ABE\)và \(\Delta ACE\)có :

AC = AB ( gt )

\(\widehat{BAE}=\widehat{CAE}\) ( CMT )

AE là cạnh chung

nên \(\Delta ABE=\Delta ACE\)\(\left(c.g.c\right)\)

Cách 2 :

Xét \(\Delta ABE\)và \(\Delta ACE\)có :

\(\widehat{BAE}=\widehat{CAE}\)( AE là tia p/g của BAC )

AB = AC ( gt )

\(\widehat{B}=\widehat{C}\)( do tam giác ABC cân tại A )

nên \(\Delta ABE=\Delta ACE\left(g.c.g\right)\)

a, Cạnh huyền cạnh góc nhọn

b,Vì 2 tam giác câu a nên CE=EK

c, mình nghĩ là sai đề

d, EK=1/2EB( vì trong 1 t/g vuông cạnh đối diện vs góc 30 độ =1/2 cạnh huyền)

CE=EK(tam giác câu a)

Suy ra ....

8 tháng 5 2020
https://i.imgur.com/dqGFHC2.jpg
8 tháng 5 2020

Sr,mk lộn đề :(((

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0