Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)=\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)=\)
\(=3\left(2+2^3+2^5+2^7+...+2^{99}\right)⋮3\)
a;
A = 109 + 108 + 107
A = 107.(102 + 10 + 1)
A = 106.2.5.(100 + 10 + 1)
A = 106.2.5.111
A = 106.2.555 ⋮ 555 (đpcm)
b;
B = 817 - 279 - 919
B = 914 - 39.99 - 919
B = 914 - 3.38.99 - 919
B = 914 - 3.94.99 - 919
B = 914 - 3.913 - 919
B = 913.(9 - 3 - 96)
B = 913.(9 - 3 - \(\overline{..1}\))
B = 913.(6 - \(\overline{..1}\))
B = 913.\(\overline{..5}\)
B ⋮ 9; B ⋮ 5
B \(\in\) BC(9; 5) = 9.5 = 45
B ⋮ 45 (đpcm)
Bài 1 : Thực hiện phép tính
a) 22 . 32 - 5 . 23
= 4 . 9 - 5 . 23
= 36 - 115
= -79
b) 52 . 2 + 20 : 22
= 25 . 2 + 20 : 4
= 50 + 5
= 55
Bài 2 : Tích A = 1.2.3.4....10 có chia hết cho 100 không?
A = 1 . 2 . 3 . 4 .... 10
A = (2 . 5 . 10) . 1 . 3 . 4 . 6 . 7 . 8 . 9
A = 100 . 1 . 3 . 4 . 6 . 7 . 8 . 9
⇒ Nên A chia hết cho 100
Bài 3 : Điền chữ số vào dấu * để đc số 35*
a) chia hết cho 2
⇒ 0; 2; 4; 6; 8
b) chia hết cho 5
⇒ 0; 5
c) chia hết cho cả 2 và 5
⇒ 0
Bài 4: chứng tỏ rằng với mọi số tự nhiên n thì tích (n + 3)(n + 6) chia hết cho 2
❆ Nếu n là chẵn
\(\Rightarrow\left[{}\begin{matrix}\text{(n + 3) = lẻ}\\\text{(n + 6) = chẵn}\end{matrix}\right.\) \(\Rightarrow\text{(n + 3)(n + 6) = lẻ . chẵn = chẵn}\)
chẵn ⋮ 2
❆ Nếu n là lẻ
\(\Rightarrow\left[{}\begin{matrix}\text{(n + 3) = chẵn }\\\text{(n + 6) = lẻ}\end{matrix}\right.\) ⇒ \(\text{(n + 3)(n + 6) = chẵn . lẻ = chẵn }\)
chẵn ⋮ 2
Vậy trong 2 trường hợp trên thì mọi số tự nhiên n đều chia hết cho 2
Bài 5: tìm các Ư của 12,7,1
Ư(12) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -12; 12}
Ư(7) = {-1; 1; -7; 7}
Ư(1) = {-1; 1}
Bài 6 tìm n sao cho :
a) 10 chia hết cho n
n ∈ Ư(10) = {-1; 1; -2; 2; -5; 5; -10; 10}
➤ Vậy n ∈ {-1; 1; -2; 2; -5; 5; -10; 10}
b) (n + 2) là Ư của 20
n + 2 ∈ Ư(20) = {-1; 1; -2; 2; -4; 4; -5; 5; -10; 10; -20; 20}
Ta có bảng sau :
n + 2 | -1 | 1 | -2 | 2 | -4 | 4 | -5 | 5 | -10 | 10 | -20 | 20 |
n | -3 | -1 | -4 | 0 | -6 | 2 | -7 | 3 | -12 | 8 | -22 | 18 |
➤ Vậy n ∈ {-3; -1; -4; 0; -6; 2; -7; 3; -12; 8; -22; 18}
c) 12 chia hết cho (n - 1)
n - 1 ∈ Ư(12) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -12; 12}
Ta có bảng sau :
n - 1 | -1 | 1 | -2 | 2 | -3 | 3 | -4 | 4 | -6 | 6 | -12 | 12 |
n | 0 | 2 | -1 | 3 | -2 | 4 | -3 | 5 | -5 | 7 | -11 | 13 |
➤ Vậy n ∈ {0; 2; -1; 3; -2; 4; -3; 5; -5; 7; -11; 13}
d) (2n + 3) là Ư của 10
2n + 3 ∈ Ư(10) = {-1; 1; -2; 2; -5; 5; -10; 10}
Ta có bảng sau :
2n+3 | -1 | 1 | -2 | 2 | -5 | 5 | -10 | 10 |
2n | -4 | -2 | -5 | -1 | -8 | 2 | -13 | 7 |
n | -2 | -1 | -2,5 | -0,5 | -4 | 1 | -6,5 | 3,5 |
➤ Vậy n ∈ {-2 ; -1 ; -2,5 ; -0,5 ; -4 ; 1 ; -6,5 ; 3,5}
A=4+42+43+...+4100
A=4(1+41+42+...+499)chia hết cho 4
suy ra a chia hết cho 4
A=(4+42)+(43+44)+...+(499+4100)
A=4(1+4)+43(1+4)+...+499(1+4)
A=(1+4)(4+43+...+499)
A=5(4+43+...+499)cha hết cho 5
suy ra Achia hết cho 5
\(a,3A=3^2+3^3+...+3^{101}\\ \Rightarrow3A-A=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}\\ \Rightarrow2A=3^{101}-3\\ \Rightarrow A=\dfrac{3^{101}-3}{2}\)
\(b,A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\\ A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\\ A=\left(1+3\right)\left(3+3^3+...+3^{99}\right)\\ A=4\left(3+3^3+...+3^{99}\right)⋮4\)
\(A=3+\left(3^2+3^3+...+3^{100}\right)\\ A=3+3^2\left(1+3+...+3^{100}\right)\\ A=3+9\left(1+3+...+3^{100}\right).chia.9.dư.3\\ \Rightarrow A⋮̸9\)
a) rút gọn a
a = 3 + 3^3 + 3^2 + .. + 3^100
3a = 3^2 + 3^3 + .. + 3^101
3a - a = (3^2 + 3^3 + .. + 3^101) - (3 + 3^2 + .. + 3^100)
2a = 3^301 - 3
a = 3^101 - 3/2
b) chứng minh a chia hết cho 4 và k chia hết cho 9
a = 3 + 3^2 + .. + 3^100
a = (3 + 3^2) + .. + (3^99 + 3^100)
a = 3 (1 + 3) + .. + 3^99 (1 + 3)
a = 3.4 + .. + 3^99.4
a = (3 + .. + 3^99).4 ⋮ 4
vì 9 ⋮̸4
=> a ⋮̸9