Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình như mình gặp dạng này thầy cho rùi, nhưng mà quên mất cách làm mất tiêu rồi
Ta có A là tích của 99 số âm ==>A là số âm
Ta lại có -A=(1-\(\frac{1}{2^2}\))(1-\(\frac{1}{3^2}\))......(1-\(\frac{1}{100^2}\))=\(\frac{3}{4}\).\(\frac{8}{9}\)......\(\frac{99.101}{100^2}\)=\(\frac{1.3}{2^2}\).\(\frac{2.4}{3^2}\)......\(\frac{99.101}{100^2}\)=\(\frac{1.2.3^2.4^2....99^2.100}{2^2.3^2.4^2.5^2.....100^2}\)=\(\frac{2.100}{2^2.100^2}\)=\(\frac{1}{200}\)==>A=\(\frac{-1}{200}\)>\(\frac{-1}{2}\)
A = (1/22 - 1).(1/32 - 1).(1/42 - 1)...(1/1002 - 1)
A = -3/22 . (-8/32) . (-15/42) ... (-9999/1002)
A = -(3/22 . 8/32 . 15/42 ... 9999/1002) ( vì có 99 thừa số, mỗi thừa số là âm nên kết quả là âm)
A = -(1.3/2.2 . 2.4/3.3 . 3.5/4.4 ... 99.101/100.100)
A = -(1.2.3...99/2.3.4...100 . 3.4.5...101/2.3.4...100)
A = -(1/100 . 101/2)
A = -101/200 < -100/200 = -1/2
Vậy A < -1/2
Ta có: \(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right).....\left(\frac{1}{100^2}-1\right)< \)
\(< \left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)....\left(\frac{1}{100}-1\right)\)
\(=\left(\frac{-1}{2}\right).\left(\frac{-2}{3}\right).\left(\frac{-3}{4}\right)...\left(\frac{-99}{100}\right)=-\left(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{99}{100}\right)\)
\(=-\left(\frac{1.2.3...99}{2.3.4...100}\right)=\frac{-1}{100}\)
Mà \(\frac{1}{100}< \frac{1}{2}\Rightarrow\frac{-1}{100}>\frac{-1}{2}\) ( vì số âm nên ngược lại số dương)
Nên A > -1/2
CHÚC BẠN HỌC TỐT
Ta có:
\(\left(\frac{1}{2}\right)^{225}=\left[\left(\frac{1}{2}\right)^9\right]^{25}=\left(\frac{1}{516}\right)^{25}\)
\(\left(\frac{1}{3}\right)^{100}=\left[\left(\frac{1}{3}\right)^4\right]^{25}=\left(\frac{1}{81}\right)^{25}\)
\(\frac{1}{516}< \frac{1}{81}\Rightarrow\left(\frac{1}{516}\right)^{25}< \left(\frac{1}{81}\right)^{25}\Rightarrow\left(\frac{1}{2}\right)^{225}< \left(\frac{1}{3}\right)^{100}\)
Bài 1
Nhân 2 vào biểu thức
Rút gọn và trừ đi 1 lần nó
còn lại \(\frac{1}{2}_{ }-\frac{1}{2^{10}}\)
\(A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(A=\frac{1}{2}-\frac{1}{2^{10}}\)