Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.2:
a: x^2-x+1=x^2-x+1/4+3/4
=(x-1/2)^2+3/4>=3/4>0 với mọi x
=>x^2-x+1 ko có nghiệm
b: 3x-x^2-4
=-(x^2-3x+4)
=-(x^2-3x+9/4+7/4)
=-(x-3/2)^2-7/4<=-7/4<0 với mọi x
=>3x-x^2-4 ko có nghiệm
5:
a: x^2+y^2=25
x^2-y^2=7
=>x^2=(25+7)/2=16 và y^2=16-7=9
x^4+y^4=(x^2)^2+(y^2)^2
=16^2+9^2
=256+81
=337
b: x^2+y^2=(x+y)^2-2xy
=1^2-2*(-6)
=1+12=13
x^3+y^3=(x+y)^3-3xy(x+y)
=1^3-3*1*(-6)
=1+18=19
bn chụp màn hình sao vậy? k bt giống bn k alt+ctrl+a
Bài 5:
a: \(x\left(x-1\right)-x^2+4x=-3\)
\(\Leftrightarrow x^2-x-x^2+4x=-3\)
hay x=-1
b: \(6x^2-\left(2x+5\right)\left(3x-2\right)=7\)
\(\Leftrightarrow6x^2-6x^2+4x-15x+10=7\)
\(\Leftrightarrow-11x=-3\)
hay \(x=\dfrac{3}{11}\)
Câu 5:
a: Ta có: \(A=\left(x-1\right)\left(x-3\right)+11\)
\(=x^2-4x+3+11\)
\(=x^2-4x+4+10\)
\(=\left(x-2\right)^2+10\ge10\forall x\)
Dấu '=' xảy ra khi x=2
b: Ta có: \(B=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
Câu 5:
a) \(A=\left(x-1\right)\left(x-3\right)+11=x^2-4x+3+11\)
\(=x^2-4x+14\)
\(=\left(x^2-4x+4\right)+10=\left(x-2\right)^2+10\ge10\)
\(minA=10\Leftrightarrow x=2\)
b) \(B=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
c: \(3x\left(x-7\right)-2\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)
d: \(7x^2-28=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Bài 5:
a: Xét tứ giác ABNC có
O là trung điểm chung của AN vàBC
góc BAC=90 độ
=>ABNC là hình chữ nhật
b: Xét tứ giác ANCM có
AM//CN
AM=CN
=>ANCM là hình bình hành
=>AN//CM
c: I đối xứng O qua AC
=>AI=AO; CI=CO
mà AO=CO
nên AI=AO=CI=OC
=>AICO là hình thoi
câu 5:gọi 4 số tự nhiên liên tiếp là: n-1;n;n+1;n+2(n\(\in N,n>0\))
theo bài ra có phương trình:
\(\left[\left(n-1\right)^3+n^3+\left(n+1\right)^3\right]=\left(n+2\right)^3\)
\(n^3-3n^2+3n-1+n^3+n^3+3n^2+3n+1\)\(=n^3+6n^2+12n+8\)
\(< =>2n^3-6n^2-6n-8=0\)
\(< =>n^3-3n^2-3n-4=0\)
\(< =>n^3-4n^2+n^2-4n+n-4=0\)
\(< =>n^2\left(n-4\right)+n\left(n-4\right)+n-4=0\)
\(< =>\left(n^2+n+1\right)\left(n-4\right)=0\)
do \(n^2+n+1=n^2+2.\dfrac{1}{2}n+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(=>n-4=0< =>n=4\)(TM)
vậy 4 số tự nhiên liên tiếp cần tìm: 3,4,5,6
Bài 5:
a: \(x\left(x-1\right)-x^2+4x=-3\)
\(\Leftrightarrow x^2-x-x^2+4x=-3\)
hay x=-1
i: \(x^2-9x+8=0\)
\(\Leftrightarrow\left(x-8\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=1\end{matrix}\right.\)
a: Ta có: \(x\left(x-1\right)-x^2+4x=-3\)
\(\Leftrightarrow x^2-x-x^2+4x=-3\)
hay x=-1
i: Ta có: \(x^2-9x+8=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
Bài 5:
a: (2x^4-x^3-x^2+7x-4)/(x^2+x-1)
\(=\dfrac{2x^4+2x^3-2x^2-3x^3-3x^2+3x+4x^2+4x-4}{x^2+x-1}\)
\(=2x^2-3x+4\)
b: \(\dfrac{y}{2x^2-xy}+\dfrac{4x}{y^2-2xy}\)
\(=\dfrac{y}{x\left(2x-y\right)}+\dfrac{4x}{y\left(y-2x\right)}\)
\(=\dfrac{y^2-4x^2}{xy\left(2x-y\right)}=\dfrac{\left(y-2x\right)\left(y+2x\right)}{xy\left(2x-y\right)}=\dfrac{-2x-y}{xy}\)
c: \(=\dfrac{6\left(x+8\right)}{7\left(x-1\right)}\cdot\dfrac{\left(x-1\right)^2}{\left(x-8\right)\left(x+8\right)}=\dfrac{6\left(x-1\right)}{7\left(x-8\right)}\)
Bài 5:
a: Xét ΔAID vuông tại A và ΔDIK vuông tại D có
\(\widehat{AID}\) chung
Do đó: ΔAID~ΔDIK
=>\(\dfrac{IA}{ID}=\dfrac{ID}{IK}\)
=>\(ID^2=IA\cdot IK\)
b: Xét ΔADI vuông tại A và ΔAKD vuông tại A có
\(\widehat{ADI}=\widehat{AKD}\left(=90^0-\widehat{ADK}\right)\)
Do đó: ΔADI~ΔAKD
=>\(\dfrac{AD}{AK}=\dfrac{AI}{AD}\)
=>\(AD^2=AK\cdot AI\)
c: Xét ΔDEA vuông tại E và ΔDAI vuông tại A có
\(\widehat{EDA}\) chung
Do đó: ΔDEA~ΔDAI
=>\(\dfrac{DE}{DA}=\dfrac{DA}{DI}\)
=>\(DE\cdot DI=DA^2\left(1\right)\)
Xét ΔDFA vuông tại F và ΔDAK vuông tại A có
\(\widehat{FDA}\) chung
Do đó: ΔDFA~ΔDAK
=>\(\dfrac{DF}{DA}=\dfrac{DA}{DK}\)
=>\(DF\cdot DK=DA^2\left(2\right)\)
Từ (1),(2) suy ra \(DE\cdot DI=DF\cdot DK\)
d: DE*DI=DF*DK
=>\(\dfrac{DE}{DK}=\dfrac{DF}{DI}\)
Xét ΔDEF vuông tại D và ΔDKI vuông tại D có
\(\dfrac{DE}{DK}=\dfrac{DF}{DI}\)
DO đó: ΔDEF~ΔDKI