Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự kẻ hình nha
a) - Vì tam giác MNP cân tại M (gt)
=> MN = MP (định nghĩa)
góc MNP = góc MPN (dấu hiệu)
- Vì NH vuông góc với MP (gt)
=> tam giác NHP vuông tại H
- Vì PK vuông góc với MN (gt)
=> tam giác PKN vuông tại K
- Xét tam giác vuông NHP và tam giác vuông PKN, có:
+ Chung NP
+ góc HPN = góc KNP (cmt)
=> tam giác vuông NHP = tam giác vuông PKN (cạnh huyền - góc nhọn)
b) Vì tam giác vuông NHP = tam giác vuông PKN (cmt)
=> góc HNP = góc KPN (2 góc tương ứng)
=> tam giác ENP cân tại E (dấu hiệu)
c) - Vì tam giác ENP cân tại E (cmt)
=> EN = EP (định nghĩa)
- Xét tam giác MNE và tam giác MPE, có:
+ Chung ME
+ MN = MP (cmt)
+ EN = EP (cmt)
=> tam giác MNE = tam giác MPE (ccc)
=> góc NME = góc PME (2 góc tương ứng)
=> ME là đường phân giác góc NMP (tc)
a: Xet ΔKNP vuông tại K và ΔHPN vuông tại H có
NP chung
góc KNP=góc HPN
=>ΔKNP=ΔHPN
b: ΔKNP=ΔHPN
=>góc ENP=góc EPN
=>ΔENP cân tại E
c: Xét ΔMKE vuông tại K và ΔMHE vuông tại H có
ME chung
MK=MH
=>ΔMKE=ΔMHE
=>góc KME=góc HME
=>ME là phân giác của góc NMP
a: Xét ΔKNP vuông tại K và ΔHPN vuong tại H có
PN chung
góc KNP=góc HPN
=>ΔKNP=ΔHPN
b: Xét ΔENP có góc ENP=góc EPN
nên ΔENP cân tại E
c: Xét ΔMNE và ΔMPE có
MN=MP
NE=PE
ME chung
=>ΔMNE=ΔMPE
=>góc NME=góc PME
=>ME là phân giác của góc NMP
a: Xét ΔKNP vuông tại K và ΔHPN vuông tại H có
PN chung
góc KNP=góc HPN
=>ΔKNP=ΔHPN
b: Xét ΔENP có góc ENP=góc EPN
nên ΔENP cân tại E
c: Xét ΔMNE và ΔMPE có
MN=MP
EN=EP
ME chung
=>ΔMNE=ΔMPE
=>góc NME=góc KME
=>ME là phân giác của góc NMP
a) Xét ΔMNH vuông tại H và ΔMPH vuông tại H có
MN=MP(ΔMNP cân tại M)
MH chung
Do đó: ΔMHN=ΔMPH(cạnh huyền-cạnh góc vuông)
Suy ra: HN=HP(hai cạnh tương ứng)
b) Xét ΔINH vuông tại I và ΔEPH vuông tại E có
HN=HP(cmt)
\(\widehat{N}=\widehat{P}\)(Hai góc ở đáy của ΔMNP cân tại M)
Do đó: ΔINH=ΔEPH(cạnh huyền-góc nhọn)
Suy ra: HI=HE(Hai cạnh tương ứng)
Xét ΔHIE có HI=HE(cmt)
nên ΔHIE cân tại H(Định nghĩa tam giác cân)
a, xét tam giác mnq và tam giác meq có
góc nmq=góc qme ( gt)
mn=me(gt)
mq chung
=> tam giác mnq= tam giác meq(c.g.c)
=>NQ = QE(2 cạnh tg ứng)
a: Xét ΔKNP vuông tại K và ΔHPN vuông tại H có
NP chung
\(\widehat{KNP}=\widehat{HPN}\)
Do đó: ΔKNP=ΔHPN
b: ΔKNP=ΔHPN
=>\(\widehat{KPN}=\widehat{HNP}\)
=>\(\widehat{ENP}=\widehat{EPN}\)
=>EN=EP
Xét ΔMEN và ΔMEP có
ME chung
EN=EP
MN=MP
Do đó: ΔMEN=ΔMEP
=>\(\widehat{NME}=\widehat{PME}\)
=>ME là phân giác của góc NMP