K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

\(x^2+3x+2\) =\(x^2+2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\frac{5}{4}\)=\(\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

Dấu "=" xảy ra <=>\(x+\frac{3}{2}=0\)<=>\(x=-\frac{3}{2}\)

Bài 2:

a) \(x^2-4x+y^2+2y+5=0\)

=> \(\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)

=>\(\left(x-2\right)^2+\left(y+1\right)^2=0\)

Vì \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\)nên:

=>\(\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

b)\(2x^2+y^2-2xy+10x+25=0\)

=>\(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

=>\(\left(x-y\right)^2+\left(x+5\right)^2=0\)

Tới đây thì dễ nhá !

29 tháng 7 2017

Mih nhầm nhá, câu a là -1/4 cơ nha bạn

14 tháng 9 2018

\(A=x^2-6x+15\)

\(A=x^2-2\cdot x\cdot3+3^2+6\)( biến đổi về dạng HĐT )

\(A=\left(x-3\right)^2+6\)

vì ( x - 3 )2 luôn >= 0 với mọi x

\(\Rightarrow A\ge6\)với mọi x

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy Amin = 6 <=> x = 3

14 tháng 9 2018

\(B=2x^2-10x+8\)

\(B=2\left(x^2-5x+4\right)\)

\(B=2\left(x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{9}{4}\right)\)

\(B=2\left[\left(x-\frac{5}{2}\right)^2-\frac{9}{4}\right]\)

\(B=2\left(x-\frac{5}{2}\right)^2-\frac{9}{2}\)

Vì 2( x - 5/2 )2 luôn >= 0 với mọi x

\(\Rightarrow B\ge\frac{-9}{2}\)với mọi x

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Vậy Bmin = -9/2 <=> x = 5/2

29 tháng 10 2022

Bài 2:

a: \(=x\left(x^2-4\right)=x\left(x-2\right)\left(x+2\right)\)

b: \(=2xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(2xy-1\right)\)

Bài 3:

=>x^2=5

hay \(x=\pm\sqrt{5}\)

28 tháng 6 2017

aVT=.\(\left(a+b+c\right)^2+a^2+b^2+c^2\)

=\(a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)

=\(2a^2+2b^2+2c^2+2ab+2ac+2bc\)

VP=\(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2\)=\(a^2+2ab+b^2+b^2+2bc+b^2+a^2+2ac+c^2\)

=\(2a^2+2b^2+2c^2+2ab+2bc+2ac\)

Vậy VT=VP

28 tháng 6 2017

a)\(\text{(a+b+c)^2 +a^2+b^2+c^2=(a+b)^2+(b+c)^2+(c+a)^2}\)

Ta có:

\(\left(a+b+c\right)^2+a^2+b^2+c^2=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2\)

\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

b) Câu b sao chỉ có một vế vậy , hằng đẳng thức thì phải có hai vế chứ

11 tháng 7 2016

a) (x+y)2-y2=x2+2xy+y2-y2=x2+2xy=x(x+2y)  (đpcm)

11 tháng 7 2016

2 a )

4a2+4a+2=(2a)2+2.2a+1+1=(2a+1)2+1

vì (2a+1)lớn hơn hoặc = 0 với mọi a nên (2a+1)2+1 lớn hơn hoặc = 1 

dấu ''='' xảy ra khi 2a+1=0<=>a=-1/2

3 tháng 10 2017

Bài 1 câu g bạn kia làm sai mình sửa lại nhá

\(3a^2-6ab+3b^2-12c^2\)

\(=3\left(a^2-2ab+b^2\right)-12c^2\)

\(=3\left(a-b\right)^2-12c^2\)

\(=3\left[\left(a-b\right)^2-4c^2\right]\)

\(=3\left(a-b-2c\right)\left(a-b+2c\right)\)

3 tháng 10 2017

Để mình làm tiếp cho :))

Bài 2 :

Câu a : \(37,5.8,5-7,5.3,4-6,6.7,5+1,5.37,5\)

\(=\left(37,5.8,5+1,5.37,5\right)-\left(7,5.3,4+6,6.7,5\right)\)

\(=37,5\left(8,5+1,5\right)-7,5\left(3,4+6,6\right)\)

\(=37,5.10-7,5.10\)

\(=10.30=300\)

Câu b : \(35^2+40^2-25^2+80.35\)

\(=\left(35^2+80.35+40^2\right)-25^2\)

\(=\left(30+45\right)^2-25^2\)

\(=75^2-25^2\)

\(=\left(75+25\right)\left(75-25\right)\)

\(=100.50=5000\)

Bài 3 :

Câu a : \(x^3-\dfrac{1}{9}x=0\)

\(\Leftrightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{1}{9}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\dfrac{1}{3}\end{matrix}\right.\)

Câu b : \(2x-2y-x^2+2xy-y^2=0\)

\(\Leftrightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(2-x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\2-x+y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y\\x+y=2\Rightarrow x=2-y\end{matrix}\right.\)

Câu c :

\(x\left(x-3\right)+x-3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

\(x^2\left(x-3\right)+27-9x=0\)

\(\Leftrightarrow x^2\left(x-3\right)-9\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\pm3\end{matrix}\right.\)

Bài 4 :

Câu a :

\(x^2-4x+3\)

\(=x^2-x-3x+3\)

\(=\left(x^2-x\right)-\left(3x-3\right)\)

\(=x\left(x-1\right)-3\left(x-1\right)\)

\(=\left(x-1\right)\left(x-3\right)\)

Câu b :

\(x^2+x-6\)

\(=x^2-2x+3x-6\)

\(=x\left(x-2\right)+3\left(x-2\right)\)

\(=\left(x-2\right)\left(x+3\right)\)

Câu c :

\(x^2-5x+6\)

\(=x^2-2x-3x+6\)

\(=\left(x^2-2x\right)-\left(3x-6\right)\)

\(=x\left(x-2\right)-3\left(x-2\right)\)

\(=\left(x-2\right)\left(x-3\right)\)

Câu d :

\(x^4+4\)

\(=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)

15 tháng 8 2015

B=[x^3+3xy(x+y)+y^3]-2(x^2+2xy+y^2)+3(x+y)+10

B=(x+y)^3-2(x+y)^2+3(x+y)+10

Thay vào