Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(a)\) Ta có :
\(3x=4y=6z\)
\(\Leftrightarrow\)\(\frac{3x}{12}=\frac{4y}{12}=\frac{6z}{12}\)
\(\Leftrightarrow\)\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\)
\(\Leftrightarrow\)\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}=\frac{2x-5z}{8-10}=\frac{-36}{-2}=18\)
Do đó :
\(\frac{x}{4}=18\)\(\Rightarrow\)\(x=18.4=72\)
\(\frac{y}{3}=18\)\(\Rightarrow\)\(y=18.3=54\)
\(\frac{z}{2}=18\)\(\Rightarrow\)\(z=18.2=36\)
Vậy \(x=72\)\(;\)\(y=54\) và \(z=36\)
Chúc bạn học tốt ~
2) Ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{a}{b+c}=\frac{1}{2}\Rightarrow2a=b+c\)
\(\frac{b}{c+a}=\frac{1}{2}\Rightarrow2b=c+a\)
\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow2c=a+b\)
Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}=\frac{2c.2a.2b}{b.c.a}=8\)
Vậy \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
a, \(y-\frac{1}{6}=\frac{5}{6}\)
\(y=\frac{5}{6}+\frac{1}{6}\)
\(y=1\)
b, 1295.23-16839
=29785-16839
=12946
_HT_
\(y.\frac{52}{26}=\frac{17}{13}\)
\(y=\frac{17}{13}:\frac{52}{26}\)
\(y=\frac{17}{26}\)
\(4\frac{1}{2}:y=\frac{2}{7}\)
\(\frac{9}{2}:y=\frac{2}{7}\)
\(y=\frac{9}{2}:\frac{2}{7}\)
\(y=\frac{63}{4}\)
\(a.16307:y=45\left(dư\text{ }17\right)\)\(\Leftrightarrow45\text{×}y+17=16307\)
\(45\text{×}y=16307-17\)
\(45\text{×}y=16290\)
\(y=16290:45\)
\(y=362\)
\(b.y\text{×}52+y\text{×}48=36700\)
\(y\text{×}\left(52+48\right)=36700\)
\(y\text{×}100=36700\)
\(y=36700:100\)
\(y=367\)
a) 16307= 45*y+17 -> y=(16307-17)/45= 362
b) y*(52+48)= 36700 -> y=36700/100= 367