Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{98}\)
\(A=\dfrac{1}{2}-\dfrac{1}{98}=\dfrac{49}{98}-\dfrac{1}{98}=\dfrac{48}{98}=\dfrac{24}{49}\)
\(A=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{92\cdot95}+\dfrac{3}{95\cdot98}\right)\\ A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{95}-\dfrac{1}{98}\right)\\ A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)=\dfrac{1}{3}\cdot\dfrac{24}{49}=\dfrac{8}{49}\)
1).15,3-21,5-3.1,5 = -10.7
2).2(4 2-2.4,1)+1,25:5 = 0.300370048 ( cái nài mik bấm máy ra vậy nếu sai thì bảo mik nha )
A = \(\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{9}{20}+\dfrac{11}{30}-\dfrac{13}{42}+\dfrac{15}{56}-\dfrac{17}{72}+\dfrac{19}{90}\)
A \(=\dfrac{3}{1\cdot2}-\dfrac{5}{2\cdot3}+\dfrac{7}{3\cdot4}-\dfrac{9}{4\cdot5}+\dfrac{11}{5\cdot6}-\dfrac{13}{6\cdot7}+\dfrac{15}{7\cdot8}-\dfrac{17}{8\cdot9}+\dfrac{19}{9\cdot10}\)
A
\(=\left(1+\dfrac{1}{2}\right)+\left(\dfrac{1}{2}+\dfrac{2}{3}\right)+\left(\dfrac{1}{3}+\dfrac{3}{4}\right)+\left(\dfrac{1}{4}+\dfrac{1}{5}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}\right)+\left(\dfrac{1}{6}+\dfrac{1}{7}\right)+\left(\dfrac{1}{7}+\dfrac{7}{8}\right)+\left(\dfrac{1}{8}+\dfrac{1}{9}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}\right)\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
A = \(1-\dfrac{1}{10}=\dfrac{9}{10}\)
Câu 5:
\(D\left(2\right)=21a+9b-6a-4b\)
\(D\left(2\right)=\left(21a-6a\right)+\left(9b-4b\right)\)
\(D\left(2\right)=15a+5b\)
Mà: \(3a+b=18\Rightarrow b=18-3b\)
\(\Rightarrow D\left(2\right)=15a+5\left(18-3b\right)\)
\(D\left(2\right)=15a+90-15a\)
\(D\left(2\right)=90\)
Vậy: ...
2.Tính giá trị của biểu thức
( 1/2 : 0,5 - 1/4 : 0,25 + 1/8 : 0,125 - 1/10 :0,1 ) : ( 1+2+3+...+2016)
\(\left(\frac{1}{2}:0,5-\frac{1}{4}:0,25+\frac{1}{8}:0,125-\frac{1}{10}:0,1\right):\left(1+2+3+...+2016\right)\\ =\left(1-1+1-1\right):\left(1+2+3+...+2016\right)\\ =0:\left(1+2+3+...+2016\right)=0\)
Ta có: \(A=\dfrac{2019}{1\cdot2}+\dfrac{2019}{2\cdot3}+\dfrac{2019}{3\cdot4}+...+\dfrac{2019}{2018\cdot2019}\)
\(=2019\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2018\cdot2019}\right)\)
\(=2019\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2018}-\dfrac{1}{2019}\right)\)
\(=2019\left(1-\dfrac{1}{2019}\right)\)
\(=2019\cdot\dfrac{2018}{2019}=2018\)
A=2019(1/1.2+1/2.3+1/3.4+........+1/2018.2019)
A= 2019(1-1/2+1/2-1/3+1/3-......+1/2018-1/2019)
A=2019(1-1/2019)
A=2019.2018/2019
A=2018