\(A\left(x\right)=3x^4-\frac{3}{4}x^2+2x^2-3\)

                

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5: 

a: \(P\left(x\right)=3x^5+x^4-2x^2+2x\)

\(Q\left(x\right)=-3x^5+2x^2-2x+3\)

b: \(P\left(x\right)+Q\left(x\right)=3x^5-3x^5+x^4-2x^2+2x^2+2x-2x+3\)

\(=x^4+3\)

\(P\left(x\right)-Q\left(x\right)=3x^5+x^4-2x^2+2x+3x^5-2x^2+2x-3\)

\(=6x^5+x^4-4x^2+4x-3\)

c: \(P\left(0\right)=3\cdot0^5+0^4-2\cdot0^2+2\cdot0=2\)

\(Q\left(0\right)=-3\cdot0^5+2\cdot0^2-2\cdot0+3=3\)

Vậy: x=0 là nghiệm của P(x), không là nghiệm của Q(x)

5 tháng 4 2018

1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)

\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)

\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

2)       \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

      +

          \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)

                \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

-

                \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)

12 tháng 6 2020

a) A(x) = -2x2 + 3x4 + x2 + x2 - 1/4x

            = ( -2x2 + x2 + x2 ) + 3x4 - 1/4x

            = 3x4 - 1/4x 

B(x) = 3x4 + 3x2 - 1/4 - 4x3 - 2x2

        = 3x4 - 4x3 + ( 3x2 - 2x2 ) - 1/4

        = 3x4 - 4x3 + x2 - 1/4

b) A(x) + B(x) = 3x4 - 1/4x + 3x4 - 4x3 + x2 - 1/4

                       = ( 3x4 + 3x4 ) - 4x3 + x2 - 1/4x - 1/4

                       = 6x4 - 4x3 + x2 - 1/4x - 1/4

A(x) - B(x) = ( 3x4 - 1/4x ) - ( 3x4 - 4x3 + x2 - 1/4 )

                  = 3x4 - 1/4x - 3x4 + 4x3 - x2 + 1/4

                  = ( 3x4 - 3x4 ) + 4x3 - x2 - 1/4x + 1/4

                  = 4x3 - x2 - 1/4x + 1/4 

c) Với x = 0 ta có :

A(0) = 3 . 04 - 1/4 . 0 = 0 - 0 = 0

=> x = 0 là nghiệm của A(x)

Tương tự ta có :

B(x) = 3 . 04 - 4 . 03 + 02 - 1/4 = 0 - 0 + 0 - 1/4 = -1/4 \(\ne\)0

=> x = 0 không phải là nghiệm của B(x) 

12 tháng 8 2016

bài 1

a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))

=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)

=\(-x^3\).\(y^2z^2\)

b)-54\(y^2\).b.x

=(-54.b).\(y^2x\)

=-54b\(y^2x\)

c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)

=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)

=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)

=\(\frac{-1}{2}x^6y^3\)

 

 

12 tháng 8 2016

Bài 3:

a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)

\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

b) 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=-8\)

 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)

\(f\left(-1\right)=24\)

24 tháng 4 2017

a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)

=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)

=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

__________________________________

P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

_________________________________________

P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

c)Thay x=0 vào đa thức P(x), ta có:

P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)

=0+0-0-0-0

=0

Vậy x=0 là nghiệm của đa thức P(x).

Thay x=0 vào đa thức Q(x), ta có:

Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)

=0+0-0+0-\(\dfrac{1}{4}\)

=0-\(\dfrac{1}{4}\)

=\(\dfrac{-1}{4}\)

Vậy x=0 không phải là nghiệm của đa thức Q(x).

19 tháng 4 2017

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x53x2+7x49x3+x214xP(x)=x5−3x2+7x4−9x3+x2−14x

=x5+7x49x32x214x=x5+7x4−9x3−2x2−14x

Q(x)=5x4x5+x22x3+3x214Q(x)=5x4−x5+x2−2x3+3x2−14

=x5+5x42x3+4x214=−x5+5x4−2x3+4x2−14

b) P(x) + Q(x) = (x5+7x49x32x21

19 tháng 4 2017

a) Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa tăng của biến.

Thu gọn: P(x) = 3x2 - 5 + x4 - 3x3 - x6 - 2x2 - x3

= x2 - 5 + x4 - 4x3 - x6

Sắp xếp: P(x) = -5 + x2 - 4x3 + x4 - x6

Thu gọn: Q(x) = x3 + 2x5 - x4 + x2 - 2x3 + x - 1= -x3 +2x5 - x4 + x2 + x - 1

Sắp xếp: Q(x) = -1 + x + x2 - x3 - x4 + 2x5

b) Ta có:

.



28 tháng 4 2017

a) Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa tăng của biến.

Thu gọn: P(x) = 3x2 - 5 + x4 - 3x3 - x6 - 2x2 - x3

= x2 - 5 + x4 - 4x3 - x6

Sắp xếp: P(x) = -5 + x2 - 4x3 + x4 - x6

Thu gọn: Q(x) = x3 + 2x5 - x4 + x2 - 2x3 + x - 1= -x3 +2x5 - x4 + x2 + x - 1

Sắp xếp: Q(x) = -1 + x + x2 - x3 - x4 + 2x5

b) Ta có:

4 tháng 4 2017

a) \(A=\)\(x^4\)\(+4x^3\)\(+2x^2\)\(+x\)\(-7\)

  \(B=\)\(2x^4\)\(-4x^3\)\(-2x^2\)\(-5x\)\(+3\)

b) f(x)= A(x)+B(x)= \(3x^4-4x\)\(-4\)

    g(x)=A(x)-B(x) =  \(-x^4+8x^3+4x^2+6x\)\(-10\)

c) g(x)= \(0^4+8.0^3+4.0^2\)\(+6.0\)\(-10\)

         = -10

   g(-2)=\(-2^4+8.-2^3+4.-2^2+6.-2\)\(-10\)

         =\(-54\)

17 tháng 4 2018

a) Thu gọn và sắp xếp đa thức trên theo lũy thừa tăng dần của biến

* \(P\left(x\right)=3x^5-5x^5+x^4-2x-x^5+3x^4-x^2+x+1\)

\(P\left(x\right)=1+\left(-2x+x\right)+\left(-x^2\right)+\left(x^4+3x^4\right)+\left(3x^5-5x^5-x^5\right)\)

\(P\left(x\right)=1-x-x^2+4x^4-3x^5\)

* \(Q_x=-5+3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\)

\(Q\left(x\right)=-5+\left(-2x+2x\right)+3x^2+\left(-3x^3\right)+\left(-3x^4\right)+\left(3x^5-x^5\right)\)

\(Q\left(x\right)=-5+3x^2-3x^3-3x^4+2x^5\)

b)

* \(P\left(x\right)+Q\left(x\right)=\left(3x^5-5x^2+x^4-2x-x^5+3x^4-x^2+x+1\right)+\left(-5+3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\right)\)

\(P\left(x\right)+Q\left(x\right)=\left(1-x-x^2+4x^4-3x^5\right)+\left(-5+3x^2-3x^3-3x^4+2x^5\right)\)\(P\left(x\right)+Q\left(x\right)=\left(1+-5\right)+\left(-x^2+3x^2\right)+\left(4x^4-3x^4\right)+\left(-3x^5+2x^5\right)-x-3x^3\)

\(P\left(x\right)+Q\left(x\right)=-4-x+x^2-3x^3+x^4-x^5\)

* \(P\left(x\right)-Q\left(x\right)=\left(3x^5-5x^2+x^4-2x-x^5+3x^4-x^2+x+1\right)-\left(-5+3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\right)\)

\(P\left(x\right)-Q\left(x\right)=\left(1-x-x^2+4x^4-3x^5\right)-\left(-5+3x^2-3x^3-3x^4+2x^5\right)\)

\(P\left(x\right)-Q\left(x\right)=1-x-x^2+4x^4-3x^5+5-3x^2+3x^3+3x^4-2x^5\)

\(P\left(x\right)-Q\left(x\right)=\left(1+5\right)+\left(-x^2-3x^2\right)+\left(4x^4+3x^4\right)+\left(-3x^5-2x^5\right)-x+3x^3\)

\(P\left(x\right)-Q\left(x\right)=6-4x+7x^4-5x^5-x+3x^3\)