K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2015

: Nhầm đề bài rồi a^2 + b^2 + c^ 2 > 2(ab+bc+ac)

12 tháng 6 2015

\(ab+bc=b\left(a+c\right)>b.b=b^2\)

\(bc+ca=c\left(a+b\right)>c.c=c^2\)

\(ca+ab=a\left(b+c\right)>a.a=a^2\)

\(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

12 tháng 2 2016

ta có

ab+bc = b(a+c) > b.b = b2

bc+ca = c(a+b) > c.c = c2

ac+ab = a(b+c ) > a.a = a2

cộng theo vế ta được

2(ab+bc+ca)>a2+b2+c2

5 tháng 5 2017

Theo bđt tam giác ta có: a<b+c 

Do a>0 => a2<ab+ac 

Tương tự có b2<bc+ab;c2<ac+bc

Suy ra a2+b2+c2<2(ab+bc+ca)

4 tháng 3 2019

+) Giả sử 0<a≤c0<a≤c ta có: a2≤c2a2≤c2

a2+b2>5c2a2+b2>5c2

⇒a2+b2>5a2⇒a2+b2>5a2

⇒b2>4a2⇒b2>4a2

⇒b>2a⇒b>2a (1)

c2>a2⇒b2+c2>a2+b2>5c2c2>a2⇒b2+c2>a2+b2>5c2

⇒b2>4c2⇒b2>4c2

⇒b>2c⇒b>2c (2)

Cộng (1), (2) ⇒2b>2a+2c⇒2b>2a+2c

⇒b>a+c⇒b>a+c ( vô lí )

⇒c<a⇒c<a

+) Chứng minh tương tự suy ra c < b

{c<ac<b⇒{Cˆ<AˆCˆ<Bˆ⇒2Cˆ<Aˆ+Bˆ{c<ac<b⇒{C^<A^C^<B^⇒2C^<A^+B^

⇒3Cˆ<Aˆ+Bˆ+Cˆ⇒3C^<A^+B^+C^

⇒3Cˆ<180o⇒3C^<180o

⇒Cˆ<60o(đpcm)⇒C^<60o(đpcm)

Vậy...

4 tháng 3 2019

Xin lỗi các bạn dấu mũ bị lộn nhé!

22 tháng 5 2017

Giải:

Trong tam giác tổng độ dài hai cạnh lớn hơn cạnh thứ 3.

Nên: \(b+c>a\)

\(\Leftrightarrow\) \(\hept{\begin{cases}ab+ac>a^2\\bc+ba>b^2\\ac+cb>c^2\end{cases}}\)

Cộng vế theo vế ta có:

\(2\left(ab+bc+ca\right)>a^2+b^2+c^2\) (Đpcm)

27 tháng 5 2017

Bài giải

Ta có : ( a + b )2 >=0=> a2 + 2ab + b2 >=2ab.(1)

(b+c)2 >=0=> b2 + 2bc + c2 >= 0 => b2 +c2 >=2bc.(2)

(c+a)2>=0=> c2 + 2ca + a2 >=0=> c2+a2 >=2ca.(3)

Cộng (1) ; (2) ; (3) theo vế - ta có : 2(a2+b2+c2)>=2(ab+bc+ca).

=> a2 + b2 + c2 >= ab + bc + ca (*)

Áp dụng bất đẳng thức trong tam giác - ta có:

a+b>c=>ac+bc>c2 . (4)

b+c>a=>ab+ac>a2 . (5)

c+a>b=>bc+ab>b2 . (6)

Cộng (4) ; (5) ; (6) theo vế - ta có :

2(ab+bc+ca)>a2+b2+c2(**)

Từ (*) ; (**) => đpcm.

Có bạn nài làm đc ko v