Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: k=xy=30
=>y=30/x
Khi x=3 thì y=30/3=10
b: Gọi số quyển sách lớp 7A,7B,7C góp được lần lượt là a,b,c
Theo đề, ta có: a/3=b/5=c/8 và a+b+c=480
Áp dụng tính chất của DTSBN, ta đc:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{8}=\dfrac{a+b+c}{3+5+8}=\dfrac{480}{16}=30\)
=>a=90; b=150; c=240
\(\dfrac{a}{31}=\dfrac{b}{26}=\dfrac{c}{18}=\dfrac{a+b+c}{31+26+18}=\dfrac{375}{75}=5\)
Do đó: a=155; b=130; c=90
1/
a/ Vì x và y tỉ lệ nghịch với nhau
=> xy = a
Mà khi x = 4 thì y = 6 => 4.6 = a => a = 24
b/ \(y=\frac{24}{x}\)
c/ Khi x = 1 => y = \(\frac{24}{1}=24\).
2/ Gọi x, y, z (cm) lần lượt là độ dài ba cạnh của một tam giác. (x, y, z > 0)
Vì độ dài ba cạnh của một tam giác tỉ lệ thuận với 3, 4, 5
=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và x + y + z = 60
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{60}{12}=5\)
=> \(\hept{\begin{cases}\frac{x}{3}=5\\\frac{y}{4}=5\\\frac{z}{5}=5\end{cases}\Rightarrow\hept{\begin{cases}x=15\\y=20\\z=25\end{cases}}}\).
Vậy độ dài ba cạnh của tam giác lần lượt là 15cm, 20cm, 25cm.
a: k=xy=30
=>y=30/x
Khi x=3 thì y=30/3=10
b: Gọi số sách lớp 7A,7B,7C đóng góp được lần lượt là a,b,c
Theo đề, ta có: a/3=b/5=c/8 và a+b+c=480
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{8}=\dfrac{a+b+c}{3+5+8}=\dfrac{480}{16}=30\)
=>a=90; b=150; c=240
không biết làm thì hỏi từng bài một , hỏi nhiều 1 lúc dài lắm bạn
1)=>y/7=x/3
áp dụng tính chất của dãy tỉ số bằng nhau ta có
y/7=x/3=(x-y)/(3-7)=16/-4=-4
=>y=7*-4=-28
x=3*-4=-12
Bài 4:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{2+4+5}=\dfrac{44}{11}=4\)
Do đó: a=8; b=16; c=20