Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B1\)
\(=\frac{1}{1}-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{37}-\frac{1}{38}-\frac{1}{39}\)
\(=1-\frac{1}{39}\)
\(=\frac{38}{39}\)
\(B2\)
\(=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+.....+\frac{1}{99\cdot100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+......+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{25}{100}-\frac{1}{100}\)
\(=\frac{24}{100}\)
\(=\frac{6}{25}\)
Bài 1 :
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(=\frac{1}{1.2}-\frac{1}{38.39}\)
\(=\frac{370}{741}\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{9}\right)\)
\(A=1-\frac{1}{9}=\frac{8}{9}\)
A=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
=1\(-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
=1-\(\frac{1}{9}=\frac{8}{9}\)
Vậy A=\(\frac{8}{9}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(A=\frac{1}{2}-\frac{1}{8}\)
\(A=\frac{3}{8}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
mình nhé!
\(a,A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
\(=\frac{-1}{4.5}+\frac{-1}{5.6}+\frac{-1}{6.7}+\frac{-1}{7.8}+\frac{-1}{8.9}+\frac{-1}{9.10}\)
\(=\frac{-1}{4}+\frac{1}{5}-\frac{1}{5}+\frac{1}{6}-...-\frac{1}{9}+\frac{1}{10}\)
\(=-\frac{1}{4}+\frac{1}{10}\)
\(=-\frac{3}{20}\)
\(b,B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(\frac{B}{7}=\frac{5}{2.7}+\frac{4}{11.7}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-....-\frac{1}{28}\)
\(=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
a) \(A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
\(\Rightarrow-1.A=\frac{1}{20}+\frac{1}{30}+........+\frac{1}{90}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+........+\frac{1}{9.10}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+........+\frac{1}{9}-\frac{1}{10}=\frac{1}{4}-\frac{1}{10}=\frac{3}{20}\)
\(\Rightarrow A=\frac{3}{20}:\left(-1\right)=\frac{-3}{20}\)
b) \(B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(\Rightarrow\frac{1}{7}B=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
\(\Rightarrow B=\frac{13}{28}:\frac{1}{7}=\frac{13}{28}.7=\frac{13}{4}\)
\(A=-\frac{1}{20}+-\frac{1}{30}+-\frac{1}{42}+...+-\frac{1}{90}\)
\(\Leftrightarrow A=\left(-1\right)\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\left(-1\right)\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(A=-\frac{3}{20}\)
\(\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90} \)\(\frac{-1}{90}\)
\(=\frac{-1}{4.5}+\frac{-1}{5.6}+\frac{-1}{6.7}+\frac{-1}{7.8}+\frac{-1}{8.9}+\frac{-1}{9.10}\)
\(=\frac{-1}{4}-\frac{-1}{5}+\frac{-1}{5}-\frac{-1}{6}+\frac{-1}{6}-\frac{-1}{7}+\frac{-1}{7}-\frac{-1}{8}+\frac{-1}{8}-\frac{-1}{9}+\frac{-1}{9}-\frac{-1}{10}\)
\(=\frac{-1}{4}-\frac{-1}{10} \)\(=\frac{-3}{20}\)
\(\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
= \(\frac{-1}{4}-\frac{-1}{10}\)
=\(\frac{-3}{20}\)
A=1/(4X5)+1/(5X6)+1/(6X7)+1/(7X8)+.....+1/(999X10)
A=1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+......+1/999+1/9990-1/10
A=1/4-1/99.9X1/100
A=1/4-1/10
A=6/40