Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình
mình giúp bài 3 cho
\(\sqrt{25x-125}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=6\left(ĐKXĐ:x\ge5\right)\)
\(< =>\sqrt{25\left(x-5\right)}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=6\)
\(< =>\sqrt{25}.\sqrt{x-5}-3\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=6\)
\(< =>5.\sqrt{x-5}-3.\frac{\sqrt{x-5}}{3}-\frac{1}{3}.3.\sqrt{x-5}=6\)
\(< =>5.\sqrt{x-5}-\sqrt{x-5}-\sqrt{x-5}=6\)
\(< =>3\sqrt{x-5}=6< =>\sqrt{x-5}=2\)
\(< =>x-5=4< =>x=4+5=9\left(tmđk\right)\)
Bài 2 xét x=0 => A =0
xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)
để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)
=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?
1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)
=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)
\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)
\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)
=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
=> M=0
Vậy M=0
a: \(A=x^2-6x+9+x^2+2x+1\)
\(=2x^2-4x+10\)
\(=2\left(x^2-2x+5\right)\)
\(=2\left(x^2-2x+1+4\right)\)
\(=2\left(x-1\right)^2+8\ge8\forall x\)
Dấu '=' xảy ra khi x=1
b: \(B=2\left(x^2+2x+1\right)+3\left(x^2+4x+4\right)-4\left(x^2+6x+9\right)\)
\(=2x^2+4x+2+3x^2+12x+12-4x^2-24x-36\)
\(=x^2-8x-22\)
\(=x^2-8x+16-38\)
\(=\left(x-4\right)^2-38\ge-38\forall x\)
Dấu '=' xảy ra khi x=4
a: \(\sqrt{3-2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)
b: \(\sqrt{5-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}\right)^2-2\cdot\sqrt{5}\cdot1+1^2}\)
\(=\sqrt{\left(\sqrt{5}-1\right)^2}=\left|\sqrt{5}-1\right|=\sqrt{5}-1\)
c: \(\sqrt{1-2\sqrt{2}+2}=\sqrt{1^2-2\cdot1\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|=\sqrt{2}-1\)