Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \({4^6}.\sqrt {0,1} = 1295,2689\)
b) \(\sqrt[8]{{2,{1^{18}} + 1}} - \sqrt {2,{1^{12}} + 1} = - 80,4632\)
c) \(\frac{{1,{5^3}}}{{\sqrt[3]{{6,8}}}} = 1,7814\)
Câu 1:
a) = \(\dfrac{-7}{2}\) x \(\dfrac{45}{32}\) = \(\dfrac{-315}{64}\)
b) = \(\dfrac{18}{7}\) : \(\dfrac{-27}{14}\) = \(\dfrac{18}{7}\) x \(\dfrac{14}{-27}\) = \(\dfrac{-4}{3}\)
c) = \(\dfrac{-3}{8}\) x ( \(\dfrac{5}{11}\) + \(\dfrac{6}{11}\) + 2 ) = \(\dfrac{-3}{8}\) x 3 = \(\dfrac{-9}{8}\)
Câu 2:
\(\dfrac{-3}{5}\) . x + \(\dfrac{7}{6}\) = \(\dfrac{5}{4}\)
\(\Leftrightarrow\) \(\dfrac{-3}{5}\) . x = \(\dfrac{5}{4}\) - \(\dfrac{7}{6}\)
\(\Leftrightarrow\) \(\dfrac{-3}{5}\) . x = \(\dfrac{1}{12}\)
\(\Leftrightarrow\) x = \(\dfrac{1}{12}\) : \(\dfrac{-3}{5}\)
\(\Leftrightarrow\) x = \(\dfrac{-5}{36}\)
C/m : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\) (*)
Thật vậy , (*) \(\Leftrightarrow\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(a+2\right)\left(c+2\right)=\left(a+2\right)\left(b+2\right)\left(c+2\right)\)
\(\Leftrightarrow ab+bc+ac+4\left(a+b+c\right)+12=abc+2\left(ab+bc+ac\right)+4\left(a+b+c\right)+8\)
\(\Leftrightarrow ab+bc+ac+abc=4\) (Đ)
=> (*) đúng ( đpcm )
B)8*2*0,125*1/4*1/2*4
=(8*0,125)*(2*1/2)*(1/4*4)
=1*1*1
=1
Câu 1:
a: =(1+2-3-4)+(5+6-7-8)+...+(2013+2014-2015-2016)
=(-4)+(-4)+...+(-4)
=-4x504=-2016
b: \(B=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{195}{196}=\dfrac{1\cdot3\cdot2\cdot4\cdot...\cdot13\cdot15}{2\cdot3\cdot...\cdot14\cdot2\cdot3\cdot...\cdot14}=\dfrac{15}{14\cdot2}=\dfrac{15}{28}\)
Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)
Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:
Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:
\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)
Đây là điều hiển nhiên.