K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

1) \(P=x^2+3x+3=\left(x^2+2.x\cdot\frac{3}{2}+\frac{9}{4}\right)+\frac{3}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(x=-\frac{3}{2}\)

2) \(Q=\left(x+y\right)^2+y^2-2\ge-2\)

Dấu "=" xảy ra khi x=0,y=0

12 tháng 8 2021

\(P=x^2+3x+3\)

\(=x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+3\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow P_{min}=\frac{3}{4}\Leftrightarrow x=-\frac{3}{2}\)

\(Q=x^2+2y^2+2xy-2\)

\(=x^2+y^2+y^2+2xy-2\)

\(=\left(x^2+2xy+y^2\right)+y^2-2\)

\(=\left(x+y\right)^2+y^2-2\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x,y\\y^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x+y\right)^2+y^2\ge0\forall x,y\)

\(\Rightarrow\left(x+y\right)^2+y^2-2\ge-2\forall x,y\)

\(\Rightarrow Q_{min}=-2\Leftrightarrow x=y=0\)

29 tháng 7 2019

A   =   x 2   +   2 y 2   –   2 x y   +   2 x   –   10 y     ⇔   A   =   x 2   +   y 2   +   1   –   2 x y   +   2 x   –   2 y   +   y 2   –   8 y   +   16   –   17     ⇔   A   =   ( x 2   +   y 2   +   12   –   2 . x . y   +   2 . x . 1   –   2 . y . 1 )   +   ( y 2   –   2 . 4 . y   +   4 2 )   –   17     ⇔   A   =   ( x   –   y   +   1 ) 2   +   ( y   –   4 ) 2   –   17

Vì  với mọi x; y nên A ≥ -17 với mọi x; y

=> A = -17 

⇔ x − y + 1 = 0 y − 4 = 0 ⇔ x = y − 1 y = 4 ⇔ x = 3 y = 4

Vậy A đạt giá trị nhỏ nhất là A = -17 tại   x = 3 y = 4

Đáp án cần chọn là: B

20 tháng 3 2019

A   =   x 2   +   2 y 2   –   2 x y   +   2 x   –   10 y     ⇔   A   =   x 2   +   y 2   +   1   –   2 x y   +   2 x   –   2 y   +   y 2   –   8 y   +   16   –   17     ⇔   A   =   ( x 2   +   y 2   +   1 2   –   2 . x . y   +   2 . x . 1   –   2 . y . 1 )   +   ( y 2   –   2 . 4 . y   +   4 2 )   –   17     ⇔   A   =   ( x   –   y   +   1 ) 2   +   ( y   –   4 ) 2   –   17

 

Vì x - y + 1 2 ≥ 0 y - 4 2 ≥ 0  với mọi x, y nên A ≥ -17 với mọi x, y

=> A = -17 ó x - y + 1 = 0 y - 4 = 0 ó x = y - 1 y = 4 ó x = 3 y = 4  

Vậy A đạt giá trị nhỏ nhất là A = -17 tại   x = 3 y = 4

Đáp án cần chọn là: C

13 tháng 1 2022

\(A=\left[\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1\right]+\left(y^2-8y+16\right)-17\\ A=\left(x-y+1\right)^2+\left(y-4\right)^2-17\ge-17\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y-1=3\\y=4\end{matrix}\right.\)

29 tháng 10 2023

\(A=x^2-2xy+2y^2-4y+5\\=(x^2-2xy+y^2)+(y^2-4y+4)+1\\=(x-y)^2+(y-2)^2+1\)

Ta thấy: \(\left(x-y\right)^2\ge0\forall x;y\)

              \(\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-y\right)^2+\left(y-2\right)^2\ge0\forall x;y\)

\(\Rightarrow A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\forall x;y\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}x-y=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=2\end{matrix}\right.\)

\(\Leftrightarrow x=y=2\)

Vậy \(Min_A=1\) khi \(x=y=2\).

$Toru$

30 tháng 5 2022

\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+y^2-8y+16-17\\ A=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge17\)

Vậy \(A_{min}=17\leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

29 tháng 12 2020

A= x2+2y2-2xy-2x-2y+1015

A = x2 - 2xy - 2x + y2 + 2y + 1 + y2 - 4y + 4 + 1010 

A = [x2 - 2x(y + 1) + (y+1)2 ]  + (y-2)2 + 1010

A = ( x - y - 1)2 + (y-2)2 + 1010 \(\ge1010\forall x,y\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy MinA = 1010 <=> \(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

9 tháng 2 2017

Q = x 2 + 2 y 2 + 2 x y − 2 x − 6 y + 2015        = x 2 + 2 x y + y 2 − 2 x − 2 y + 1 + y 2 − 4 y + 4 + 2010        = x 2 + 2 x y + y 2 − 2 x + 2 y + 1 + y 2 − 4 y + 4 + 2010        = x + y 2 − 2 x + y + 1 + y 2 − 4 y + 4 + 2010        = x + y − 1 2 + y − 2 2 + 2010

AH
Akai Haruma
Giáo viên
27 tháng 5 2023

Lời giải:

$P=(x^2+y^2+2xy)+y^2-6x-8y+2028$

$=(x+y)^2-6(x+y)+(y^2-2y)+2028$
$=(x+y)^2-6(x+y)+9+(y^2-2y+1)+2018$

$=(x+y-3)^2+(y-1)^2+2018\geq 0+0+2018=2018$

Vậy $P_{\min}=2018$

Giá trị này đạt tại $x+y-3=y-1=0$

$\Leftrightarrow y=1; x=2$