Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=x^2-8x+19\)
\(=x^2-8x+16+3\)
\(=\left(x-4\right)^2+3\)
Nhận thấy: \(\left(x-4\right)^2\ge0\) ; \(\forall x\)
=> \(\left(x-4\right)^2+3>0\)
hay A luôn dương với mọi giá trị của x

Bài 3:
( x+3)(x2-3x+9)-x(x2-3)=18
=> x3-3x2+9x+3x2-9x+27-x3+3x=18
=> 3x+27=18
=> 3x = 18-27
=> 3x = -9
=> x = -9:3
=> x = -3
Lưu ý: ở chỗ -x(x2-3), dấu trừ không phải của chữ x nên nếu bạn muốn thế số vào thì phải ghi 2 dấu trừ ở chỗ này.

Trog những HĐT trên chắc là
bn đánh máy thiếu số mũ nhỉ??
Phải ko
1.\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x\right)^3+y^3-\left(2x\right)^3+y^3=2y^3\)
2. \(2\left(2x+1\right)\left(3x-1\right)+\left(2x+1\right)^2+\left(3x-1\right)^2\)
\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)
3. \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
\(=\left(x-y+z+y-z\right)^2=x^2\)
4. \(\left(x-3\right)\left(x+3\right)-\left(x-3\right)^2\)
\(=\left(x-3\right)\left(x+3-x+3\right)=6\left(x-3\right)\)
5. \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3+2x^2-x-2-x^3+y^3=2x^2-x-2+y^3\)
6. Áp dụng các hằng đẳng thức đáng nhớ

Bài 1:
\(\left(x-2\right)\left(2x+5\right)-2x^2-1=0\)
\(\Leftrightarrow2x^2+x-10-2x^2-1=0\)
\(\Leftrightarrow x-11=0\Leftrightarrow x=11\)
Bài 2:
\(P=\left|2-x\right|+2y^4+5\)
Ta thấy:
\(\begin{cases}\left|2-x\right|\ge0\\2y^4\ge0\end{cases}\)
\(\Rightarrow\left|2-x\right|+2y^4\ge0\)
\(\Rightarrow\left|2-x\right|+2y^4+5\ge5\)
\(\Rightarrow P\ge5\)
Dấu = khi \(\begin{cases}\left|2-x\right|=0\\2y^4=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=2\\y=0\end{cases}\)
Vậy MinP=5 khi \(\begin{cases}x=2\\y=0\end{cases}\)
Bài 4:
2(2x+x2)-x2(x+2)+(x3-4x+13)
=2x2+4x-x3-2x2+x3-4x+13
=(2x2-2x2)+(4x-4x)-(-x3+x3)+13
=13

Mk nghĩ bn nên ghi biểu thức lại rõ ràng đi, chứ như zầy khó nhìn quá, mk k hiểu

bài 1:
Ta thấy: \(\left(3x+9\right)^2\ge0\)
\(\Rightarrow2\left(3x+9\right)^2\ge0\)
\(\Rightarrow2\left(3x+9\right)^2+5\ge5\)
Dấu = khi \(3x+9=0\Leftrightarrow3x=-9\Leftrightarrow x=-3\)
Vậy x=-3 thì bt đạt GTNN
1) \(P=x^2+3x+3=\left(x^2+2.x\cdot\frac{3}{2}+\frac{9}{4}\right)+\frac{3}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(x=-\frac{3}{2}\)
2) \(Q=\left(x+y\right)^2+y^2-2\ge-2\)
Dấu "=" xảy ra khi x=0,y=0
\(P=x^2+3x+3\)
\(=x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+3\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow P_{min}=\frac{3}{4}\Leftrightarrow x=-\frac{3}{2}\)
\(Q=x^2+2y^2+2xy-2\)
\(=x^2+y^2+y^2+2xy-2\)
\(=\left(x^2+2xy+y^2\right)+y^2-2\)
\(=\left(x+y\right)^2+y^2-2\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x,y\\y^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+y\right)^2+y^2\ge0\forall x,y\)
\(\Rightarrow\left(x+y\right)^2+y^2-2\ge-2\forall x,y\)
\(\Rightarrow Q_{min}=-2\Leftrightarrow x=y=0\)