K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

a) \(ĐKXĐ:x\inℝ\)

\(\frac{x^2+2x+3}{x^2-x+1}=0\)

\(\Leftrightarrow x^2+2x+3=0\)

\(\Leftrightarrow\left(x+1\right)^2+2=0\left(ktm\right)\)

\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)

b) \(ĐKXĐ:x\ne\pm2\)

 \(\frac{x}{x+2}+\frac{4}{x-2}=\frac{4}{x^2-4}\)

\(\Leftrightarrow\frac{x}{x+2}+\frac{4}{x-2}-\frac{4}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x\left(x-2\right)+4\left(x+2\right)-4}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x^2-2x+4x+8-4=0\)

\(\Leftrightarrow x^2+2x+4=0\)

\(\Leftrightarrow\left(x+1\right)^2+3=0\left(ktm\right)\)

\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)

12 tháng 2 2020

a) Ta có: \(x^2+2x+3\)

\(=\left(x^2+2x+1\right)+2\)

\(=\left(x+1\right)^2+2>0\)

Vậy pt vô nghiệm

12 tháng 2 2020

b) Ta có \(x^2+2x+4\)

\(=\left(x^2+2x+1\right)+3\)

\(=\left(x+1\right)^2+3>0\)

Vậy pt vô nghiệm

22 tháng 1 2020

\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{CM vô số nghiệm}\)
       \(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)

7 tháng 3 2020

:))) tự lm

( mà mik cũng ko bt đâu nha )

7 tháng 3 2020

a) \(x^4-x^3+2x^2-x+1=0\)

\(\Leftrightarrow x^4-x^3+x^2+x^2-x+1=0\)

\(\Leftrightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\left(ktm\right)\\x^2-x+1=0=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)
b) \(x^4-2x^3+4x^2-3x+2=0\)

\(\Leftrightarrow x^4-x^3+x^2-x^3+x^2-x+2x^2-2x+2=0\)

\(\Leftrightarrow x^2\left(x^2-x+1\right)-x\left(x^2-x+1\right)+2\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2-x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-x+1=0\\x^2-x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\\\left(x-\frac{1}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)

18 tháng 1 2022

giúp mình với

 

18 tháng 1 2022

a. \(\dfrac{x^2+2x+3}{x^2-x+1}=0\) ⇔x2+2x+3=0 ⇔x2+2x+1+2=0 ⇔(x+1)2+2=0

Vì (x+1)2+2>0 nên phương trình đã cho vô nghiệm.

b) \(\dfrac{x}{x+2}+\dfrac{4}{x-2}=\dfrac{4}{x^2-4}\) ⇔\(\dfrac{x\left(x-2\right)+4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4}{\left(x-2\right)\left(x+2\right)}\)

\(x\left(x-2\right)+4\left(x+2\right)=4\) ⇔x2-2x+4x+8-4=0 ⇔x2+2x+4=0                ⇔x2+2x+1+3=0 ⇔(x+1)2+3=0

Vì (x+1)2+3>0 nên phương trình đã cho vô nghiệm.

     
6 tháng 3 2020

B1.a/ (x-2)(x^2+2x+2)

     b/ (x+1)(x+5)(x+2)

     c/ (x+1)(x^2+2x+4)

B2.

6 tháng 3 2020

1a) x3 - 2x - 4 = 0

<=> (x3 - 4x) + (2x - 4) = 0

<=> x(x2 - 4) + 2(x - 2) = 0

<=> x(x - 2)(x + 2) + 2(x - 2) = 0

<=> (x - 2)(x2 + 2x + 2) = 0

<=> x - 2 = 0 (vì x2 + 2x + 2 \(\ne\)0)

<=> x = 2

Vậy S = {2}

b) x3 + 8x2 + 17x + 10 = 0

<=> (x3 + 5x2) + (3x2 + 15x) + (2x + 10) = 0

<=> x2(x + 5) + 3x(x + 5) + 2(x + 5) = 0

<=> (x2 + 3x + 2)(x + 5) = 0

<=> (x2 + x + 2x + 2)(x + 5) = 0

<=> (x + 1)(x + 2)(x + 5) = 0

<=> x + 1 = 0 hoặc x + 2 = 0 hoặc x + 5 = 0

<=> x = -1 hoặc x = -2 hoặc x = -5

Vậy S = {-1; -2; -5}

c) x3 + 3x2 + 6x + 4 = 0

<=> (x3 + x2) + (2x2 + 2x) + (4x + 4) = 0

<=> x2(x + 1) + 2x(x + 1) + 4(x + 2) = 0

<=> (x2 + 2x + 4)(x + 2) = 0

<=> x + 2 = 0

<=> x = -2

Vậy S = {-2}

18 tháng 4 2018

\(a)\) Ta có : 

\(\left(x-1\right)^2\ge0\)

\(3x^2\ge0\)

\(\Rightarrow\)\(\left(x-1\right)^2+3x^2\ge0\)

Dấu "=" xảy ra tức là phương trình có nghiệm x khi và chỉ khi \(\hept{\begin{cases}\left(x-1\right)^2=0\\3x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\x=0\end{cases}}}\)

Vậy phương trình có nghiệm \(x=0\) và \(x=1\)

Đề sai nhé 

18 tháng 4 2018

\(b)\) Ta có : 

\(x^2+2x+3\)

\(=\)\(\left(x^2+2x+1\right)+2\)

\(=\)\(\left(x+1\right)^2+2\ge2>0\)

Vậy đa thức \(x^2+2x+3\)  vô nghiệm 

Em mới lớp 7 có gì sai anh thông cảm nhé 

23 tháng 3 2020

a) \(x^2+3x+7=x^2+3x-2\Leftrightarrow x^2-x^2+3x-3x=-7-2\)

\(\Leftrightarrow0x=-9\)(vô lí)

Vậy phương trình vô nghiệm

b) \(2x^2-6x+6=0\)(xem đề lại nha bn cái này ko vô nghiệm)

chúc bn học tốt!

13 tháng 1 2019

\(\left|x-2\right|+\left|x^2-4x+3\right|=0\)

\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|x^2-4x+3\right|\ge0\end{cases}\text{dấu }=\text{xảy ra khi }}\)

\(\hept{\begin{cases}\left|x-2\right|=0\\\left|x^2-4x+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\x^2-4x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\\left(x-1\right).\left(x-3\right)=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=1,x=3\end{cases}}}\)(vô lí)

Vậy phương trình vô nghiệm

p/s: mk ko bt cách trình bài => sai sót bỏ qua