\(\dfrac{3x\left(x+5\right)}{2\left(x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2021

a/ ĐK: $x\ne -5$

$\dfrac{6x^2+30x}{4}=\dfrac{6x(x+5)}{4}=\dfrac{3x(x+5)}{2}$ 

Đề này sai

b/ ĐK: $x\ne \pm 1$

$\dfrac{(x+2)(x+1)}{x^2-1}\\=\dfrac{(x+2)(x+1)}{(x-1)(x+1)}\\=\dfrac{x+2}{x-1}$

$\to$ ĐPCM

Câu a sai đề nhé.

20 tháng 1 2019

a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)

\(6x^2-5x+3=2x-9x+6x^2\)

\(6x^2-5x+3-6x^2+9x-2x=0\)

\(2x+3=0\)

\(2x=-3\)

\(x=-\dfrac{3}{2}\)

20 tháng 1 2019

b, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)

\(\dfrac{20\left(x-4\right)}{4.10}-\dfrac{4\left(3+2x\right)}{4.10}=\dfrac{5x}{5}+\dfrac{1-x}{5}\)

\(\dfrac{20x-80}{40}-\dfrac{12+8x}{40}=\dfrac{5x+1-x}{5}\)

\(\dfrac{20x-80-12-8x}{40}=\dfrac{4x+1}{5}\)

\(\dfrac{12x-92}{40}-\dfrac{4x+1}{5}=0\)

\(\dfrac{12x-92}{40}-\dfrac{8\left(4x+1\right)}{40}=0\)

\(12x-92-8\left(4x+1\right)=0\)

⇔ 12x - 92 - 32x - 8 = 0

⇔ -100 - 20x = 0

⇔ 20x = -100

⇔ x = -100 : 20

⇔ x = -5

13 tháng 11 2018

Help me !!!!!

13 tháng 11 2018

Bài 1:

a) \(\dfrac{15xy}{10x^2y}\)

= \(\dfrac{3.5xy}{2.5xyx}\)

= \(\dfrac{3}{2x}\)

d) \(\dfrac{6x\left(x+5\right)^3}{2x^2\left(x+5\right)}\)

= \(\dfrac{3.2x\left(x+5\right)\left(x+5\right)^2}{x.2x\left(x+5\right)}\)

= \(\dfrac{3\left(x+5\right)^2}{x}\)


23 tháng 8 2018

c/ đk: x khác 1; x khác -3

\(\dfrac{3x-1}{x-1}+\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)

\(\Rightarrow\left(3x+1\right)\left(x+3\right)+\left(2x+5\right)\left(x-1\right)+4=x^2+2x-3\)

\(\Leftrightarrow3x^2+10x+3+2x^2+3x-5+4=x^2+2x-3\)

\(\Leftrightarrow4x^2+11x+5=0\)

\(\Leftrightarrow\left(4x^2+2\cdot2x\cdot\dfrac{11}{4}+\dfrac{121}{16}\right)-\dfrac{41}{16}=0\)

\(\Leftrightarrow\left(2x+\dfrac{11}{4}\right)^2=\dfrac{41}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{11}{4}=\dfrac{\sqrt{41}}{4}\\2x+\dfrac{11}{4}=-\dfrac{\sqrt{41}}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11+\sqrt{41}}{8}\\x=\dfrac{-11-\sqrt{41}}{8}\end{matrix}\right.\)

Vậy.........

d/ \(\dfrac{12x+1}{6x-2}-\dfrac{9x-5}{3x+1}=\dfrac{108x-36x^2-9}{4\left(9x^2-1\right)}\)

đk: \(x\ne\pm\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{12x+1}{2\left(3x-1\right)}-\dfrac{9x-5}{3x+1}=\dfrac{108x-36x^2-9}{4\left(3x-1\right)\left(3x+1\right)}\)

\(\Rightarrow2\left(12x+1\right)\left(3x+1\right)-4\left(9x-5\right)\left(3x-1\right)=108x-36x^2-9\)

\(\Leftrightarrow72x^2+24x+6x+2-108x^2+36x-60x-20-108x+36x^2+9=0\)

\(\Leftrightarrow-102x-9=0\)

\(\Leftrightarrow-102x=9\Leftrightarrow x=-\dfrac{3}{34}\)(TM)

Vậy.........

23 tháng 8 2018

a/ \(\left(x+1\right)^2\left(x+2\right)+\left(x+1\right)^2\left(x-2\right)=-24\)

\(\Leftrightarrow\left(x+1\right)^2\left(x+2+x-2\right)=-24\)

\(\Leftrightarrow2x\left(x^2+2x+1\right)=-24\)

\(\Leftrightarrow2x^3+4x^2+2x+24=0\)

\(\Leftrightarrow2x^3-2x^2+8x+6x^2-6x+24=0\)

\(\Leftrightarrow x\left(2x^2-2x+8\right)+3\left(2x^2-2x+8\right)=0\)

\(\Leftrightarrow\left(2x^2-2x+8\right)\left(x+3\right)=0\)

\(\Leftrightarrow2\left(x^2-x+4\right)\left(x+3\right)=0\)

Ta thấy: \(x^2-x+4=\left(x^2-2x\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{15}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)

=> x+ 3 = 0 <=> x= -3

Vậy......

b/ \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow2x^3+x^2+5x+2x^2+x+5=0\)

\(\Leftrightarrow x\left(2x^2+x+5\right)+\left(2x^2+x+5\right)=0\)

\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)

Ta thấy: \(2x^2+x+5=\left(\sqrt{2}x+2\cdot\sqrt{2}x\cdot\dfrac{\sqrt{2}}{4}+\dfrac{1}{8}\right)+\dfrac{39}{8}=\left(\sqrt{2}x+\dfrac{\sqrt{2}}{4}\right)^2+\dfrac{39}{8}>0\)

=> x + 1 = 0 <=> x = -1

Vậy....

Bài 1: Thực hiện phép tính a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\) b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\) c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\) d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\) e,...
Đọc tiếp

Bài 1: Thực hiện phép tính

a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\)

b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\)

c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\)

d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\)

e, \(\dfrac{x^3}{x-1}\)-\(\dfrac{x^2}{x+1}\)-\(\dfrac{1}{x-1}\)+\(\dfrac{1}{x+1}\)

f, \(\dfrac{x^3+x^2-2x-20}{x^2-4}\)-\(\dfrac{5}{x+2}\)+\(\dfrac{3}{x-2}\)

g, \(\left\{\dfrac{x-y}{x+y}+\dfrac{x+y}{x-y}\right\}\).\(\left\{\dfrac{x^2+y^2}{2xy}\right\}\).\(\dfrac{xy}{x^2+y^2}\)

h, \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}\)+\(\dfrac{1}{\left(b-c\right)\left(c-a\right)}\)+\(\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

i, \(\dfrac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)

k, \(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left\{\dfrac{x^2}{y}-\dfrac{y^2}{x}\right\}\right]\):\(\dfrac{x-y}{x}\)

Bài 2: Rút gọn các phân thức:

a, \(\dfrac{25x^2-20x+4}{25x^2-4}\)

b, \(\dfrac{5x^2+10xy+5y^2}{3x^3+3y^3}\)

c, \(\dfrac{x^2-1}{x^3-x^2-x+1}\)

d, \(\dfrac{x^3+x^2-4x-4}{x^4-16}\)

e, \(\dfrac{4x^4-20x^3+13x^2+30x+9}{\left(4x^2-1\right)^2}\)

Bài 3: Rút gọn rồi tính giá trị các biểu thức:

a, \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\) với a = 4, b = -5, c = 6

b, \(\dfrac{16x^2-40xy}{8x^2-24xy}\) với \(\dfrac{x}{y}\) = \(\dfrac{10}{3}\)

c, \(\dfrac{\dfrac{x^2+xy+y^2}{x+y}-\dfrac{x^2-xy+y^2}{x-y}}{x-y-\dfrac{x^2}{x+y}}\) với x = 9, y = 10

Bài 4: Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên:

a, \(\dfrac{x^3-x^2+2}{x-1}\)

b, \(\dfrac{x^3-2x^2+4}{x-2}\)

c, \(\dfrac{2x^3+x^2+2x+2}{2x+1}\)

d, \(\dfrac{3x^3-7x^2+11x-1}{3x-1}\)

e, \(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)

2
8 tháng 12 2017

Giúp mình nhé mọi người ! leuleu

8 tháng 12 2017

\(1.\)

\(a.\)

\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=x-1\)

\(b.\)

\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)

\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)

\(=\dfrac{2y}{\left(x-y\right)}\)

Tương tự các câu còn lại

7 tháng 5 2017

a. \(x^2y^3.35xy=5.7x^3y^4\)

\(\Leftrightarrow35x^3y^4=35x^3y^4\Rightarrowđpcm\)

\(b.x^2\left(x+2\right).\left(x+2\right)=x\left(x+2\right)^2.x\)

\(\Leftrightarrow x^2\left(x+2\right)^2=x^2\left(x+2\right)^2\Rightarrowđpcm\)

\(c.\left(3-x\right)\left(9-x^2\right)=\left(3+x\right)\left(x^2-6x+9\right)\)

\(\Leftrightarrow\left(3-x\right)\left(3-x\right)\left(3+x\right)=\left(3+x\right)\left(3-x\right)^2\)

\(\Leftrightarrow\left(3-x\right)^2\left(3+x\right)=\left(3-x\right)^2\left(3+x\right)\)

\(\Rightarrowđpcm\)

\(d.5\left(x^3-4x\right)=\left(10-5x\right)\left(-x^2-2x\right)\)

\(\Leftrightarrow5x^3-20x=5x^3-20x\Rightarrowđpcm\)

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

5 tháng 11 2017

Bài 1: (Sgk/36):

a. \(\dfrac{5y}{7}\)=\(\dfrac{20xy}{28x}\)

5y . 28x = 140xy

7 . 20xy = 140xy

=> 5y . 28x = 7 . 20xy

Vậy \(\dfrac{5y}{7}\)=\(\dfrac{20xy}{28x}\)

b. \(\dfrac{3x\left(x+5\right)}{2\left(x+5\right)}\)=\(\dfrac{3x}{2}\)

3x . 2(x+5) = 6x2+30x

2 . 3x(x+5) = 6x2+30x

=> 3x . 2(x+5) = 2 . 3x(x+5)

Vậy \(\dfrac{3x\left(x+5\right)}{2\left(x+5\right)}\)=\(\dfrac{3x}{2}\)

c. \(\dfrac{x+2}{x-1}\)=\(\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}\)

(x+2) (x2-1) = (x+2) (x-1) (x-1)

=> (x+2) (x2-1) = (x-1) (x+2) (x+1)

Vậy \(\dfrac{x+2}{x-1}\)=\(\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}\)

d. \(\dfrac{x^2-x-2}{x+1}\)=\(\dfrac{x^2-3x+2}{x-1}\)

(x-1) (x2-x-2) = x3-2x2-x+2

(x+1) (x2-3x+2) = x3-2x2-x+2

=> (x-1) (x2-x-2) = (x2-3x+2) (x+1)

Vậy \(\dfrac{x^2-x-2}{x+1}\)=\(\dfrac{x^2-3x+2}{x-1}\)

24 tháng 8 2018

a. (x + 2)(x2 – 3x + 5) = (x + 2)x2

⇔ (x + 2)(x2 – 3x + 5) – (x + 2)x2 = 0

⇔ (x + 2)[(x2 – 3x + 5) – x2] = 0

⇔ (x + 2)(\(x^2\) – 3x + 5 – \(x^2\)) = 0

⇔ (x + 2)(5 – 3x) = 0

⇔ x + 2 = 0 hoặc 5 – 3x = 0

x + 2 = 0 ⇔ x = -2

5 – 3x = 0 ⇔ x = \(\dfrac{5}{3}\)

Vậy phương trình có nghiệm x = -2 hoặc x =\(\dfrac{5}{3}\)

c.\(2x^2\) – x = 3 – 6x

\(2x^2\) – x + 6x – 3 = 0

⇔ (\(2x^2\) + 6x) – (x + 3) = 0

⇔ 2x(x + 3) – (x + 3) = 0

⇔ (2x – 1)(x + 3) = 0

⇔ 2x – 1 = 0 hoặc x + 3 = 0

2x – 1 = 0 ⇔ x = 1/2

x + 3 = 0 ⇔ x = -3

Vậy phương trình có nghiệm x = \(\dfrac{1}{2}\) hoặc x = -3