Bài 4.
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

a/ Xét tam giác BEM và tam giác CFM có:

góc BEM = góc CFM = 900 (GT)

BM = MC (AM là trung tuyến t/g ABC)

góc B = góc C (t/g ABC cân)

=> tam giác BEM = tam giác CFM

b/ Ta có: AB = AC (t/g ABC cân)

BE = CF (t/g BEM = t/g CFM)

=> AE = AF

Xét hai tam giác vuông AEM và AFM có:

AE = AF (cmt)

AM: cạnh chung

=> tam giác AEM = tam giác AFM

=> ME = MF

Ta có: AE = AF; ME = MF

=> AM là trung trực của EF

c/ Xét hai tam giác vuông ABD và ACD có:

AB = AC (GT)

AD: cạnh chung

=> tam giác ABD = tam giác ACD

=> BD = CD

Ta có: AB = AC; BD = CD

=> AD là trung trực của EF

Ta có: AM là trung trực của EF

AD là trung trực của EF

=> AM trùng AD

Vậy A;M;D thẳng hàng.

---> đpcm.

10 tháng 6 2017

Ta có hình vẽ:

A B C E F M D

14 tháng 6 2017

Hình vẽ:

A C B E K D

a/ Xét 2Δ vuông:ΔACE và ΔAKE có:

AE: chung

\(\widehat{CAE}=\widehat{KAE}\left(gt\right)\)

=> ΔACE = ΔAKE (ch-gn)

=> AC = AK (đpcm)

b/ Ta có: \(\widehat{CAE}=\widehat{KAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^o}{2}=30^o\left(gt\right)\)

\(\widehat{B}=30^o\left(180^o-\widehat{C}-\widehat{CAB}\right)\)

=> \(\widehat{KAE}=\widehat{B}=30^o\)

=> \(\Delta EAB\) cân tại E

mà EK _l_ AB (gt)

=> EK cũng là đường trung tuyến của AB(t/c các đường troq Δ cân)

=> KA = KB (đpcm)

c/ Xét \(\Delta EAB\) có:

EK _l_ AB (gt) ; BD _l_ AE kéo dài (gt)

AC _l_ BE ké dài (gt)

=> EK, BD, AC đồng quy tại 1 điểm (đpcm)

14 tháng 6 2017

đáp án ở đây bạn nha trừ câu c):

https://hoc24.vn/hoi-dap/question/59956.html

3 tháng 5 2021

Em mới lớp 6 còn ngu nên ko biếtttttttttttttttt

3 tháng 5 2021

a, theo pytago ta có:

AB2+AC2=BC2 <=> AC=\(\sqrt{10^2-6^2}\)=8 (cm)

so sánh: BAC>ABC>ACB vì BC>AC>AB

b, vì A là trung điểm BD nên CA là trung tuyến của tam giác DBC

mà CA\(\perp\)BD nên CA là đường cao của tam giác DBC

=> CA vừa là trung tuyến vừa là đường cao của tam giác DBC nên DBC cân ở C

7 tháng 2 2022

a) Ta có: OC=OA+AC

OD=OB+BD

Mà OA=OB và AC=BD (gt)

=>OC=OD

Xét Δ OAD và Δ OBC có:

OA=OB (gt)

ˆOO^ góc chung

OC=OD (cmt)

=> Δ OAD=Δ OBC (c.g.c)

=> AD=BC (2 cạnh tương ứng)

Δ OAD=Δ OBC (cmt)

=> ˆD=ˆCD^=C^ và ˆA1=ˆB1A1^=B1^ (2 góc tương ứng)

Mà ˆA1+ˆA2=ˆB1+ˆB2A1^+A2^=B1^+B2^= 180(kề bù)

=> ˆA2=ˆB2A2^=B2^

Δ EAC và Δ EBD có:

ˆC=ˆDC^=D^ (cmt)

AC=BD (gt)

ˆA2=ˆB2A2^=B2^ (cmt)

=> Δ EAC= ΔEBD (g.c.g)

c) Δ EAC=ΔEBD (cmt)

=> EA=EB (2 cạnh tương ứng)

ΔOBE và Δ OAE có:

OB=OA (gt)

ˆB1=ˆA1B1^=A1^ (cmt)

EA=EB (cmt)

=>Δ OBE=Δ OAE (c.g.c)

=> ˆO1=ˆO2O1^=O2^ (2 góc tương ứng)

Vậy OE là phân giác ˆxO

12 tháng 6 2017

A B C G H

a) Ta có:

\(\Delta ABC\) cân tại A => Đường cao AH đồng thời cũng là đường trung tuyến

\(\Rightarrow BH=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Xét \(\Delta ABH\) vuông tại H, ta có:

\(AH^2+BH^2=AB^2\) ( Định lý Py-ta-go )

\(\Rightarrow AH^2=AB^2-BH^2=5^2-3^2=25-9=16\left(=\left(\pm4\right)^2\right)\)

\(\Rightarrow AH=4\left(cm\right)\) (AH>0)

Vậy BH=3 cm; AH=4 cm

12 tháng 6 2017

Tham khảo hình bài làm đầy đủ :

Câu hỏi của Nguyễn Hoàng Bảo Nhi - Toán lớp 0 | Học trực tuyến

Chúc bn học tốt!

12 tháng 6 2017

Huy Hoang tự vẽ hình nhé!

\(a,\) Xét \(\Delta MAC\)\(\Delta MDC\) ta có:

+) \(MB=MC\) (AM là trung tuyến nên M là trung điểm của BC)

+) \(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)

+) \(MA=MB\left(gt\right)\)

\(\Rightarrow\Delta MAC=MDC\Rightarrow\widehat{BAM}=\widehat{CDM}\)\(CD=AB< AC\)

Trong \(\Delta ADC:AC< CD\Rightarrow\widehat{ADC}>\widehat{DAC}\left(dpcm1\right)\)

\(\widehat{MAB}=\widehat{MDC}\Rightarrow\widehat{MAB}=\widehat{ADC}>\widehat{MAC}\)

\(\Rightarrow MAB>MAC\)

b, AH vuông với BC tại H

=> H là hình chiếu của A trên BC

HB là đường chiếu tương ứng của đường xiên AB

HC là đường chiếu tương ứng của đường xiên AC

\(AB< AC\Rightarrow HB< HC\left(dpcm3\right)\)

Mặt khác E thuộc AH => HB cũng là đường chiếu của đường xiên EB

HC là hình chiếu của đường xiên EC

\(HB< HC\left(theodpcm3\right)\)

\(\Rightarrow EC< EB\left(dpcm4\right)\)

\(\)

12 tháng 6 2017

Hình đây nha bạn!

A B C D H E M

Chúc bạn học tốt!!!

10 tháng 6 2017

A B C D E F

a, Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:

BD:cạnh chung; góc ABD= góc EBD(gt)

Do đó tam giác ABD=tam giác EBD(cạnh huyền - góc nhọn)

=> AB=EB; AD=ED(cặp cạnh tương ứng)

Vì AB=EB; AD=ED nên B là D nằm trên đường trung trực của AE

=> BD là đường trung trực của AE(đpcm)

b, Xét tam giác ADF và tam giác EDC ta có:

góc FAD=góc CED(=90độ);AD=ED(cmt); góc ADF=góc EDC(đối đỉnh)

Do đó tam giác ADF=tam giác EDC(g.c.g)

=> DF=DC(cặp cạnh tương ứng) (đpcm)

c, Xét tam giác DEC vuông tại E ta có:

DE<DC(do trong tam giác vuông cạnh huyền lớn nhất)

mà DE=DA=> DA<DC(đpcm)

d, Vì tam giác ADF=tam giác EDC(cm câu b)

=> AF=EC(cặp cạnh tương ứng)

Ta có: BF=BA+AF; BC=BE+EC

mà BA=BE;AF=EC(đã cm)

=> BF=BC

=> tam giác BCF cân tại B

mặc khác ta có: BA=BE(cm câu a)

=> tam giác ABE cân tại B

Xét tam giác BCF và tam giác ABE cân tại B ta có:

góc BAE=\(\dfrac{180^o-\text{góc}ABE}{2}\) ;góc BFC=\(\dfrac{180^o-\text{góc}FBC}{2}\)

=> góc BAE=góc BFC

=> AE//CF(do có 1 cặp góc bằng nhau ở vị trí đồng vị) (đpcm)

Chúc bạn học tốt!!!

10 tháng 6 2017

B A E F C D

a, Xét \(\Delta BAD\)\(\Delta BED\) có:

\(\widehat{BAD}=\widehat{BED}=90^0\)

BD chung

\(\widehat{ABD}=\widehat{EBD}\) (do BD là phân giác \(\widehat{ABC}\))

\(\Rightarrow\Delta BAD=\Delta BED\left(CH-GN\right)\)

\(\Rightarrow AB=EB\Rightarrow\) B nằm trên trung trực của AE (1)

\(AD=ED\Rightarrow\) D nằm trên trung trực của AE (2)

Từ (1) và (2) => BD là trung trực của AE

Vậy BD là trung trực của AE.

b, Xét \(\Delta ADF\)\(\Delta EDC\) có:

\(\widehat{DAF}=\widehat{DEC}=90^0\)

AD=ED

\(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh)

\(\Rightarrow\Delta ADF=\Delta EDC\left(g-c-g\right)\)

=> DF=DC.

Vậy DF=DC

c, Ta có: tam giác ADF vuông tại A=> cạnh huyền DF>AD (3)

Mà DF=DC (4)

Từ (3) và (4) => AD<DC

Vậy AD<DC

d, Ta có:

+) CA là đường cao từ C của tam giác BCF

+) FE là đường cao từ F của tam giác BCF

Mà CA và FE cắt nhau tại D => D là trực tâm của tam giác BCF

=> BD là đường cao từ B của tam giác BCF => \(BD\perp FC\) (5)

Mặt khác, BD là trung trực của AE \(\Rightarrow BD\perp AE\) (6)

Từ (5) và (6) => AE//FC

Vậy AE//FC

10 tháng 6 2017

A B C D K E

a, Ta có: góc EAB=góc EBA(=30độ)

mà góc AKE=góc BKE(=90độ)

=> góc AEK=góc BEK

Xét tam giác AKE và tam giác BKE ta có:

góc AKE=góc BKE(=90độ); KE:chung; góc AEK=góc BEK(cmt)

Do đó tam giác AKE=tam giác BKE(g.c.g)

=> AK=BK(cặp cạnh tương ứng) (đpcm)

b, Xét tam giác ABC vuông tại C và tam giác BAD vuông tại D ta có:

AB: cạnh chung; góc ABC=góc BAD(=30độ)

Do đó tam giác ABC=tam giác BAD(cạnh huyền - góc nhọn)

=> BC=AD(cặp cạnh tương ứng)(đpcm)

Chúc bạn học tốt!!!

10 tháng 6 2017

mình cảm ơn bạn nhiều

18 tháng 7 2019

A B C E D M M

a) Vì AM là phân giác của góc BAC

nên góc BAM = CAM

Xét ΔBAM và ΔCAM có:

AB = AC ( giả thiết )

Góc BAM = CAM ( chứng minh trên )

AM cạnh chung.

=> Δ BAM = ΔCAM ( c.g.c )

=> BM = CM ( 2 cạnh tương ứng )

mà M nằm giữa B và C

Do đó M là trung điểm của BC → ĐPCM.

b) Ta có: AB + BE = AE

AC + CF = AF

mà AB = AC ( đề bài ); AE = AF (đề bài)

=> BE = CF.

Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )

Lại có: Góc ABC + CBE = 180 độ (kề bù)

Góc ACB + BCF = 180 độ (kề bù)

=> ABC + CBE = ACB + BCF

=> Góc CBE = BCF.

Xét ΔBCE và ΔCBF có:

BE = CF ( chứng minh trên)

Góc CBE = BCF ( chứng minh trên)

BC cạnh chung ( theo hình vẽ)

=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.

c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM

Xét ΔMBE và ΔMCF có:

MB = MC ( chứng minh ở câu a )

Góc EBM = FCM ( chứng minh trên)

BE = FC ( chứng minh ở câu b)

=> ΔMBE = ΔMCF ( c.g.c )

=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.

d) Xét ΔEMN và ΔFMN có:

EM = FM ( chứng minh ở câu c )

EN = FN ( N là trung điểm EF )

MN chung.

=> ΔEMN = ΔFMN.

=> Góc ENM = FNM (2 góc tương ứng)

Suy ra MN là tia phân giác của góc ENF (1)

Có: góc BAM = CAM

Suy ra AM là tia phân giác của góc BAC (2)

Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.

Do đó A, M, N thẳng hàng → ĐPCM.

18 tháng 7 2019

A B C M E F N

CM:a) Xét t/giác ABM và ACM

có: AB = AC (gt)

  \(\widehat{BAM}=\widehat{CAM}\) (gt) 

   AM : chung

=> t/giác ABM = t/giác ACM (c.g.c)

=> BM = CM (2 cạnh t/ứng)

=> M là trung điểm của BC

b) Ta có: AE + AC = EC 

         AF + AB = FB

mà AE = AF (gt); AB = AC (gt)

=> EC = FB

Xét t/giác BCE và t/giác CBF

có: BC : chung

  \(\widehat{BCE}=\widehat{FBC}\) (vì t/giác ABC cân)

 EC = FB (cmt)

=> t/giác BCE = t/giác CBF (c.g.c)

c) Xét t/giác BEM và t/giác CFM

có: EB = FC (vì t/giác BCE = t/giác CBF)

 \(\widehat{EBM}=\widehat{FCM}\) (vì t/giác BCE = t/giác CBF)

 BM = CM (cm câu a)

=> t/giác BEM = t/giác CFM (c.g.c)

=> ME = MF (2 cạnh t/ứng)

d) Xét t/giác AEN và t/giác AFN

có: AE = AF (gt)

  EN = FN (gt)

  AN : chung

=> t/giác AEN = t/giác AFN (c.c.c)

=> \(\widehat{EAN}=\widehat{MAF}\) (2 góc t/ứng)

=> AN là tia p/giác của góc EAF => \(\widehat{EAN}=\widehat{MAF}=\frac{\widehat{EAF}}{2}\)

AM là tia p/giác của góc BAC => \(\widehat{BAM}=\widehat{CAM}=\frac{\widehat{BAC}}{2}\)

Mà \(\widehat{EAF}=\widehat{BAC}\) (đối đỉnh)

=> \(\widehat{EAN}=\widehat{NAF}=\widehat{BAM}=\widehat{MAC}\)

Ta có: \(\widehat{FAN}+\widehat{NAE}+\widehat{EAB}=180^0\) 

hay \(\widehat{BAM}+\widehat{EAB}+\widehat{EAN}=180^0\)

=> A, M, N thẳng hàng