Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có gì khong hiểu hỏi lại cj nhé:
a, b ,c lần lượt từ trên xuống.
a: ΔBAM cân tại B
mà BE là đường cao
nên BE là phân giác của góc ABM
b: Xét ΔMBA có
AH,BE là đừog cao
AH căt BE tại K
=>K là trực tâm
=>MK vuông gócAB
=>MK//AC
a: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
=>ΔAHM=ΔAKM
=>AK=AH
góc BAM+góc CAM=90 độ
góc BMA+góc MAH=90 độ
mà góc CAM=góc HAM
nên góc BAM=góc BMA
=>ΔBAM cân tại B
b: Xét ΔAIC có
CH,IK là đường cao
CH cắt IK tại M
=>M là trực tâm
=>AM vuông góc CI
Xét ΔACI có
AM vừa là đường cao, vừa là phân giác
=>ΔACI cân tại A
Xét ΔAIC có AH/AI=AK/AC
nên KH//IC
1: Xét ΔAHM vuông tại H và ΔAKM vuông tại K co
AM chung
góc HAM=góc KAM
=>ΔAHM=ΔAKM
=>AH=AK
=>ΔAHK cân tại A
2: AH=AK
MH=MH
=>AM là trung trực của HK
3:
a: Xét ΔAHC vuông tại H và ΔAKQ vuông tại K có
AH=AK
góc HAC chung
=>ΔAHC=ΔAKQ
=>AQ=AC
=>ΔAQC cân tại A
b: Xét ΔAQC có AH/AQ=AK/AC
nên HK//CQ
a, xét tam giác AMB và tam giác AMC có:
AB=AC(gt)
\(\widehat{BAM}\) =\(\widehat{CAM}\)(gt)
AM chung
suy ra tam giác AMB= tam giác AMC(c.g.c)
b,xét tam giác AHM và tam giác AKM có:
AM cạnh chung
\(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)
suy ra tam giác AHM=tam giác AKM(CH-GN)
Suy ra AH=AK
c,gọi I là giao điểm của AM và HK
xét tam giác AIH và tam giác AIK có:
AH=AK(theo câu b)
\(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)
AI chung
suy ra tam giác AIH=tam giác AIK (c.g.c)
Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ
\(\Rightarrow\)HK vuông góc vs AM
a: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có
BM chung
góc ABM=góc NBM
=>ΔBAM=ΔBNM
c:
góc HAC=90 độ-góc C
=90 độ-30 độ=60 độ
=>góc IAM=60 độ
góc AIM=góc BIH=90 độ-góc MBC
góc AMI=90 độ-góc ABM
mà góc MBC=góc ABM
nên góc AIM=góc AMI
=>ΔAMI cân tại A
mà góc IAM=60 độ
nên ΔAMI đều
a: Xét ΔCAM vuông tại A và ΔCNM vuông tại N có
CM chung
góc ACM=góc NCM
=>ΔCAM=ΔCNM
b: Xét ΔMAK vuông tại A và ΔMNB vuông tại N có
MA=MN
góc AMK=góc NMB
=>ΔMAK=ΔMNB
=>MK=MB